High precision numerical sequences of rotating hairy black holes

We analyze numerically the existence of regular stationary rotating hairy black holes within the framework of general relativity, which are the result of solving the Einstein-Klein-Gordon system for a complex-valued scalar field under suitable boundary (regularity and asymptotically flat) conditions. To that aim we solve the corresponding system of elliptic partial differential equations using spectral methods which are specially suited for such a numerical task. In order to obtain such system of equations we employ a parametrization for the metric that corresponds to quasi-isotropic coordinates (QIC) that have been used in the past for analyzing different kinds of stationary rotating relativistic systems. Our findings are in agreement with those reported originally by Herdeiro \&Radu ite{Herdeiro2014,Herdeiro2015}. The method is submitted to several analytic and numerical tests, which include the recovery of the Kerr solution in QIC and the cloud solutions in the Kerr background. We report different global quantities that allow us to determine the contribution of the boson hair to the spacetime, as well as relevant quantities at the horizon, like the surface gravity. The latter indicates to what extent the hairy solutions approach the extremal limit, noting that for this kind of solutions the ratio of the angular momentum per squared mass $J_\infty/M^2_{\rm ADM}$ can be larger than unity due to the contribution of the scalar hair, a situation which differs from the Kerr metric where this parameter is bounded according to $0\leq |J/M^2| \leq 1$ with the upper bound corresponding to the extremal case.

[1]  D. Langlois,et al.  Linear perturbations of Einstein-Gauss-Bonnet black holes , 2022, Journal of Cosmology and Astroparticle Physics.

[2]  D. Raine General relativity , 1980, Nature.

[3]  S. Fairhurst,et al.  General-relativistic precession in a black-hole binary , 2021, Nature.

[4]  S. Nissanke,et al.  Post-Newtonian gravitational and scalar waves in scalar-Gauss–Bonnet gravity , 2021, Classical and Quantum Gravity.

[5]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VII. Polarization of the Ring , 2021, The Astrophysical Journal Letters.

[6]  Jiliang Jing,et al.  Shadow of a disformal Kerr black hole in quadratic degenerate higher-order scalar–tensor theories , 2020, The European Physical Journal C.

[7]  S. Mukohyama,et al.  On rotating black holes in DHOST theories , 2020, Journal of Cosmology and Astroparticle Physics.

[8]  H. Motohashi,et al.  General Relativity solutions with stealth scalar hair in quadratic higher-order scalar-tensor theories , 2020, Journal of Cosmology and Astroparticle Physics.

[9]  C. Charmousis,et al.  Regular black holes via the Kerr-Schild construction in DHOST theories , 2020, Journal of Cosmology and Astroparticle Physics.

[10]  S. Mukohyama,et al.  Hairy black holes in DHOST theories: exploring disformal transformation as a solution generating method , 2019, Journal of Cosmology and Astroparticle Physics.

[11]  P. Grandclément,et al.  Hairy rotating black holes in cubic Galileon theory , 2019, Classical and Quantum Gravity.

[12]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[13]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[14]  C. Herdeiro,et al.  Effective stability against superradiance of Kerr black holes with synchronised hair , 2018, Physics Letters B.

[15]  B. Kleihaus,et al.  Rotating black holes with non-Abelian hair , 2016, 1609.07357.

[16]  C. Bambi,et al.  Iron Kα line of Kerr black holes with scalar hair , 2016, 1606.04654.

[17]  C. Herdeiro,et al.  Kerr black holes with Proca hair , 2016, 1603.02687.

[18]  M. Volkov Hairy black holes in the XX-th and XXI-st centuries , 2016, 1601.08230.

[19]  S. Hod Extremal Kerr–Newman black holes with extremely short charged scalar hair , 2015, 1707.06246.

[20]  B. Kleihaus,et al.  Scalarized hairy black holes , 2015, 1503.01672.

[21]  I. Smoli'c Symmetry inheritance of scalar fields , 2015, 1501.04967.

[22]  C. Herdeiro,et al.  Construction and physical properties of Kerr black holes with scalar hair , 2015, 1501.04319.

[23]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[24]  Eric Gourgoulhon,et al.  Numerical Relativity: Solving Einstein's Equations on the Computer , 2011 .

[25]  S. Paltani,et al.  The Large Observatory for X-ray Timing (LOFT) , 2011, Experimental Astronomy.

[26]  Philippe Grandclément,et al.  KADATH: A spectral solver for theoretical physics , 2009, J. Comput. Phys..

[27]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[28]  J. Novak,et al.  Spectral Methods for Numerical Relativity , 2007, Living reviews in relativity.

[29]  E. W. Mielke,et al.  General relativistic boson stars , 2003, 0801.0307.

[30]  D. Thompson,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003, astro-ph/0302299.

[31]  E. Ay'on-Beato,et al.  ‘No-scalar-hair’ theorems for nonminimally coupled fields with quartic self-interaction , 2002, gr-qc/0212050.

[32]  E. Becklin,et al.  The accelerations of stars orbiting the Milky Way's central black hole , 2000, Nature.

[33]  E. Becklin,et al.  High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy , 1998, astro-ph/9807210.

[34]  D. Sudarsky,et al.  Do collapsed boson stars result in new types of black holes , 1997 .

[35]  A. Eckart,et al.  Observations of stellar proper motions near the Galactic Centre , 1996, Nature.

[36]  A. Saa New no‐scalar‐hair theorem for black holes , 1996, gr-qc/9601021.

[37]  O. Lechtenfeld,et al.  Exact black-hole solution with self-interacting scalar field , 1995, gr-qc/9502011.

[38]  D. Sudarsky A simple proof of a no-hair theorem in Einstein-Higgs theory , 1995 .

[39]  O. Brodbeck,et al.  Instability proof for Einstein Yang-Mills solitons and black holes with arbitrary gauge groups , 1994, gr-qc/9411058.

[40]  M. Heusler A no‐hair theorem for self‐gravitating nonlinear sigma models , 1992 .

[41]  S. Droz,et al.  Stability analysis of self-gravitating skyrmions , 1991 .

[42]  N. Straumann,et al.  Nonlinear perturbations of Einstein-Yang-Mills solitons and non-abelian black holes , 1991 .

[43]  T. Zannias,et al.  The uniqueness of the Bekenstein black hole , 1991 .

[44]  N. Straumann,et al.  Instability of a colored black hole solution , 1990 .

[45]  H. Künzle,et al.  Spherically symmetric static SU(2) Einstein–Yang–Mills fields , 1990 .

[46]  P. Mazur A global identity for nonlinear σ-models , 1984 .

[47]  P. Mazur PROOF OF UNIQUENESS OF THE KERR-NEWMAN BLACK HOLE SOLUTION , 1982 .

[48]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[49]  E. Gourgoulhon 3 + 1 formalism in general relativity , 2012 .

[50]  P. Mazur BLACK HOLE UNIQUENESS THEOREMS , 2008 .

[51]  Carsten Gundlach,et al.  Introduction to 3+1 Numerical Relativity , 2008 .

[52]  Miguel Alcubierre,et al.  Introduction to 3+1 Numerical Relativity , 2008 .

[53]  R. Wald On the instability of the n =1 Einstein--Yang--Mills black holes and mathematically related systems , 1992 .

[54]  B. Carter Killing Horizons and Orthogonally Transitive Groups in Space‐Time , 1969 .