RBS 1032: A TIDAL DISRUPTION EVENT IN ANOTHER DWARF GALAXY?

RBS 1032 is a supersoft (Γ ∼ 5), luminous (∼1043 erg s−1) ROSAT PSPC source which has been associated with an inactive dwarf galaxy at z = 0.026, SDSS J114726.69+494257.8. We have analyzed an XMM-Newton observation that confirms that RBS 1032 is indeed associated with the dwarf galaxy. Moreover, RBS 1032 has undergone a factor of ∼100–300 decay since 1990 November. This variability suggests that RBS 1032 may not be a steadily accreting intermediate-mass black hole, but rather an accretion flare from the tidal disruption of a star by the central black hole (which may or may not be intermediate-mass). We suggest that additional tidal disruption events may remain unidentified in archival ROSAT data, such that disruption rate estimates based upon ROSAT All-Sky Survey data may need reconsideration.

[1]  L. Ho,et al.  Deep spectroscopy of the MV ∼ −14.8 host galaxy of a tidal disruption flare in A1795 , 2014, 1407.6737.

[2]  S. Sazonov,et al.  Stellar tidal disruption candidates found by cross-correlating the ROSAT Bright Source Catalogue and XMM–Newton observations , 2014, 1407.6284.

[3]  Nathaniel R. Butler,et al.  A TIDAL DISRUPTION EVENT IN A NEARBY GALAXY HOSTING AN INTERMEDIATE MASS BLACK HOLE , 2013, 1311.6162.

[4]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[5]  L. Ho,et al.  A tidal flare candidate in Abell 1795 , 2013, 1307.6556.

[6]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[7]  J. Guillochon,et al.  PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION , 2013, 1304.6397.

[8]  A. Levan,et al.  SUPERLUMINOUS X-RAYS FROM A SUPERLUMINOUS SUPERNOVA , 2013, 1304.1173.

[9]  Roland Haas,et al.  GRB060218 AS A TIDAL DISRUPTION OF A WHITE DWARF BY AN INTERMEDIATE-MASS BLACK HOLE , 2012, 1212.4837.

[10]  J. Guillochon,et al.  THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION , 2012, 1206.2922.

[11]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[12]  K. Imamura,et al.  Observational Report on the Classical Nova KT Eridani , 2012, 1205.4872.

[13]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[14]  R. D. Saxton,et al.  A tidal disruption-like X-ray flare from the quiescent galaxy SDSS J120136.02+300305.5 , 2012, 1202.5900.

[15]  P. Giommi,et al.  Relativistic jet activity from the tidal disruption of a star by a massive black hole , 2011, Nature.

[16]  L. Ho,et al.  BLACK HOLE MASS AND BULGE LUMINOSITY FOR LOW-MASS BLACK HOLES , 2011, 1107.4103.

[17]  R. Saxton The long-term variability of a large sample of AGN , 2011 .

[18]  D. Grupe,et al.  DISCOVERY OF AN ULTRASOFT X-RAY TRANSIENT SOURCE IN THE 2XMM CATALOG: A TIDAL DISRUPTION EVENT CANDIDATE , 2011, 1106.0744.

[19]  Nathaniel R. Butler,et al.  A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star , 2011, Science.

[20]  N. Gehrels,et al.  THE ORIGIN OF VARIABILITY OF THE INTERMEDIATE-MASS BLACK-HOLE ULX SYSTEM HLX-1 IN ESO 243-49 , 2011, 1102.4336.

[21]  M. Eracleous,et al.  PROBING INTERMEDIATE-MASS BLACK HOLES WITH OPTICAL EMISSION LINES FROM TIDALLY DISRUPTED WHITE DWARFS , 2010, 1010.6087.

[22]  M. Eracleous,et al.  A TIDAL DISRUPTION FLARE IN A1689 FROM AN ARCHIVAL X-RAY SURVEY OF GALAXY CLUSTERS , 2010, 1008.4140.

[23]  N. Shaviv,et al.  Super-Eddington slim accretion discs with winds , 2010, 1004.1797.

[24]  T. Roberts,et al.  EVIDENCE FOR A STELLAR DISRUPTION BY AN INTERMEDIATE-MASS BLACK HOLE IN AN EXTRAGALACTIC GLOBULAR CLUSTER , 2009, 0908.1115.

[25]  M. Salvato,et al.  A candidate tidal disruption event in the Galaxy cluster Abell 3571 , 2009, 0901.3357.

[26]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[27]  R. D. Saxton,et al.  Evolution of tidal disruption candidates discovered by XMM-Newton , 2008, 0807.4452.

[28]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[29]  G. Hasinger,et al.  Candidate tidal disruption events from the XMM-Newton slew survey , 2006, astro-ph/0612340.

[30]  I. Bikmaev,et al.  RBS 1032: a dwarf-nucleated spheroidal galaxy with an intermediate-mass black hole hosted in a globular cluster , 2006 .

[31]  S. Mahadevan,et al.  Tidal Disruption of a Star by a Black Hole: Observational Signature , 2004, astro-ph/0404256.

[32]  S. Gezari,et al.  Follow-Up Chandra Observations of Three Candidate Tidal Disruption Events , 2004, astro-ph/0402497.

[33]  G. Hasinger,et al.  A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6–1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario , 2004, astro-ph/0402468.

[34]  W. Voges,et al.  The Hamburg/RASS Catalogue of optical identifications. Northern high-galactic latitude ROSAT Bright , 2003, astro-ph/0305535.

[35]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[36]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[37]  M. Watson,et al.  The XMM-Newton Survey Science Centre Medium Sensitivity Survey† , 2002, astro-ph/0211533.

[38]  J. L. Donley,et al.  Accepted for publication in The Astronomical Journal Large-Amplitude X-ray Outbursts from Galactic Nuclei: A Systematic Survey Using ROSAT Archival Data , 2002 .

[39]  Andrew Ulmer,et al.  Flares from the Tidal Disruption of Stars by Massive Black Holes , 1999 .

[40]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[41]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[42]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[43]  J. Dickey,et al.  H I in the Galaxy , 1990 .