Synaptotagmin 11 interacts with components of the RNA‐induced silencing complex RISC in clonal pancreatic β‐cells

[1]  M. Zavolan,et al.  Argonaute2 Mediates Compensatory Expansion of the Pancreatic β Cell , 2014, Cell metabolism.

[2]  T. Südhof,et al.  A molecular machine for neurotransmitter release: synaptotagmin and beyond , 2013, Nature Medicine.

[3]  E. Dietrichs,et al.  Supportive evidence for 11 loci from genome-wide association studies in Parkinson's disease , 2013, Neurobiology of Aging.

[4]  Xuemei Chen,et al.  MicroRNAs Inhibit the Translation of Target mRNAs on the Endoplasmic Reticulum in Arabidopsis , 2013, Cell.

[5]  Martin Hintersteiner,et al.  The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing , 2013, The EMBO journal.

[6]  O. Silvennoinen,et al.  Expression analysis of Tudor-SN protein in mouse tissues. , 2013, Tissue & cell.

[7]  Wei Chen,et al.  Argonaute2 Regulates the Pancreatic β-Cell Secretome* , 2013, Molecular & Cellular Proteomics.

[8]  L. Groop,et al.  Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes , 2012, Molecular and Cellular Endocrinology.

[9]  T. Südhof,et al.  Activity-Dependent IGF-1 Exocytosis Is Controlled by the Ca2+-Sensor Synaptotagmin-10 , 2011, Cell.

[10]  G. Charpentier,et al.  Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells , 2011, Diabetologia.

[11]  M. Laguerre,et al.  A charged prominence in the linker domain of the cysteine‐string protein Cspα mediates its regulated interaction with the calcium sensor synaptotagmin 9 during exocytosis , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  Zhiping P Pang,et al.  Cell biology of Ca2+-triggered exocytosis. , 2010, Current opinion in cell biology.

[13]  B. Ochoa,et al.  Association of SND1 protein to low density lipid droplets in liver steatosis , 2010, Journal of Physiology and Biochemistry.

[14]  M. Craxton A manual collection of Syt, Esyt, Rph3a, Rph3al, Doc2, and Dblc2 genes from 46 metazoan genomes - an open access resource for neuroscience and evolutionary biology , 2010, BMC Genomics.

[15]  P. Andrews,et al.  Quantitative Proteomics Analysis of Cell Cycle-regulated Golgi Disassembly and Reassembly* , 2010, The Journal of Biological Chemistry.

[16]  P. Hussey,et al.  Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome , 2009, Nature Cell Biology.

[17]  J. B. Sørensen,et al.  Conflicting views on the membrane fusion machinery and the fusion pore. , 2009, Annual review of cell and developmental biology.

[18]  O. Voinnet,et al.  Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity , 2009, Nature Cell Biology.

[19]  M. Sattler,et al.  Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. , 2009, Journal of molecular biology.

[20]  O. Silvennoinen,et al.  p100 increases AT1R expression through interaction with AT1R 3′-UTR , 2008, Nucleic acids research.

[21]  Hanna S. Yuan,et al.  Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing , 2008, Nucleic acids research.

[22]  S. Theander,et al.  Synaptotagmin VII splice variants α, β, and δ are expressed in pancreatic β‐cells and regulate insulin exocytosis , 2008 .

[23]  A. Scadden Inosine-Containing dsRNA Binds a Stress-Granule-like Complex and Downregulates Gene Expression In trans , 2007, Molecular cell.

[24]  O. Silvennoinen,et al.  The multifunctional human p100 protein 'hooks' methylated ligands , 2007, Nature Structural &Molecular Biology.

[25]  O. Silvennoinen,et al.  Transcriptional co-activator protein p100 interacts with snRNP proteins and facilitates the assembly of the spliceosome , 2007, Nucleic acids research.

[26]  J. Lang,et al.  Distinct roles of the C2A and the C2B domain of the vesicular Ca2+ sensor synaptotagmin 9 in endocrine beta-cells. , 2007, The Biochemical journal.

[27]  A. Hémar,et al.  The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles , 2007, Histochemistry and Cell Biology.

[28]  C. Cziepluch,et al.  Cysteine-string protein isoform beta (Cspβ) is targeted to the trans-Golgi network as a non-palmitoylated CSP in clonal β-cells , 2007 .

[29]  T. Südhof,et al.  Synaptotagmin-12, a synaptic vesicle phosphoprotein that modulates spontaneous neurotransmitter release , 2007, The Journal of cell biology.

[30]  F. Gorelick,et al.  The Identification of a Novel Endoplasmic Reticulum to Golgi SNARE Complex Used by the Prechylomicron Transport Vesicle* , 2006, Journal of Biological Chemistry.

[31]  M. Gómez-Lechón,et al.  Overexpression of SND p102, a rat homologue of p100 coactivator, promotes the secretion of lipoprotein phospholipids in primary hepatocytes. , 2006, Biochimica et biophysica acta.

[32]  Xiaohui S. Xie,et al.  A Mammalian Organelle Map by Protein Correlation Profiling , 2006, Cell.

[33]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[34]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[35]  O. Silvennoinen,et al.  The Transcriptional Co-activator Protein p100 Recruits Histone Acetyltransferase Activity to STAT6 and Mediates Interaction between the CREB-binding Protein and STAT6* , 2005, Journal of Biological Chemistry.

[36]  M. Broadhurst,et al.  The p100 EBNA-2 coactivator: a highly conserved protein found in a range of exocrine and endocrine cells and tissues in cattle. , 2005, Biochimica et biophysica acta.

[37]  M. Craxton Synaptotagmin gene content of the sequenced genomes , 2004, BMC Genomics.

[38]  C. Wollheim,et al.  Synaptotagmin V and IX isoforms control Ca2+-dependent insulin exocytosis , 2004, Journal of Cell Science.

[39]  E. Hirsch,et al.  Ultrastructural localization of parkin in the rat brainstem, thalamus and basal ganglia , 2004, Journal of Neural Transmission.

[40]  Daniela C. Zarnescu,et al.  Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway , 2004, Nature Neuroscience.

[41]  Daniel R. Scoles,et al.  The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. , 2003, Human molecular genetics.

[42]  A. Caudy,et al.  A micrococcal nuclease homologue in RNAi effector complexes , 2003, Nature.

[43]  M. Fukuda Molecular cloning and characterization of human, rat, and mouse synaptotagmin XV. , 2003, Biochemical and biophysical research communications.

[44]  M. Fukuda Molecular cloning, expression, and characterization of a novel class of synaptotagmin (Syt XIV) conserved from Drosophila to humans. , 2003, Journal of biochemistry.

[45]  E. Kieff,et al.  Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II , 2002, The EMBO journal.

[46]  K. Mikoshiba,et al.  Expression and localisation of synaptotagmin isoforms in endocrine beta-cells: their function in insulin exocytosis. , 2001, Journal of cell science.

[47]  H. Rackwitz,et al.  Nuclear coactivator protein p100 is present in endoplasmic reticulum and lipid droplets of milk secreting cells. , 2000, Biochimica et biophysica acta.

[48]  K. Mikoshiba,et al.  SYNCRIP, a Cytoplasmic Counterpart of Heterogeneous Nuclear Ribonucleoprotein R, Interacts with Ubiquitous Synaptotagmin Isoforms* , 2000, The Journal of Biological Chemistry.

[49]  T. Hobman,et al.  GERp95, a membrane-associated protein that belongs to a family of proteins involved in stem cell differentiation. , 1999, Molecular biology of the cell.

[50]  T. Stevens,et al.  A Human Homolog Can Functionally Replace the Yeast Vesicle-associated SNARE Vti1p in Two Vesicle Transport Pathways* , 1998, The Journal of Biological Chemistry.

[51]  K. Mikoshiba,et al.  The first C2 domain of synaptotagmin is required for exocytosis of insulin from pancreatic β‐cells: action of synaptotagmin at low micromolar calcium , 1997, The EMBO journal.

[52]  T. Südhof,et al.  The Evolutionary Pressure to Inactivate , 1997, The Journal of Biological Chemistry.

[53]  P. Lacy,et al.  Standardization of a Digestion-filtration Method for Isolation of Pancreatic Islets , 1976, Diabetes.

[54]  T. Südhof,et al.  Cell biology of Ca 2+ -triggered exocytosis , 2010 .

[55]  Kevin Kim,et al.  Silencing by small RNAs is linked to endosomal trafficking , 2009, Nature Cell Biology.

[56]  S. Theander,et al.  Synaptotagmin VII splice variants alpha, beta, and delta are expressed in pancreatic beta-cells and regulate insulin exocytosis. , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[57]  C. Cziepluch,et al.  Cysteine-string protein isoform beta (Cspbeta) is targeted to the trans-Golgi network as a non-palmitoylated CSP in clonal beta-cells. , 2007, Biochimica et biophysica acta.

[58]  A. Hémar,et al.  Synaptotagmin 8 is expressed both as a calcium-insensitive soluble and membrane protein in neurons, neuroendocrine and endocrine cells. , 2006, Biochimica et biophysica acta.

[59]  P. Seeburg,et al.  Modulation of microRNA processing and expression through RNA editing by ADAR deaminases , 2006, Nature Structural &Molecular Biology.

[60]  T. Südhof,et al.  Synaptotagmin 13: structure and expression of a novel synaptotagmin. , 2001, European journal of cell biology.

[61]  K. Mikoshiba,et al.  Characterization of KIAA1427 protein as an atypical synaptotagmin (Syt XIII). , 2001, The Biochemical journal.