An early developmental vertebrate model to assess nanomaterial safety: Bridging cell- based and mammalian nanoparticle toxicity assessment

[1]  F. Pampaloni,et al.  The third dimension bridges the gap between cell culture and live tissue , 2007, Nature Reviews Molecular Cell Biology.

[2]  Robert Rallo,et al.  Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. , 2011, ACS nano.

[3]  J. Galama,et al.  16S rRNA based polymerase chain reaction compared with culture and serological methods for diagnosis ofMycoplasma pneumoniae infection , 1994, European Journal of Clinical Microbiology and Infectious Diseases.

[4]  B. Liu,et al.  A progressive approach on zebrafish toward sensitive evaluation of nanoparticles' toxicity. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[5]  Andrea Ragusa,et al.  Water solubilization of hydrophobic nanocrystals by means of poly(maleic anhydride-alt-1-octadecene) , 2008 .

[6]  Adriele Prina-Mello,et al.  Screening the cytotoxicity of single-walled carbon nanotubes using novel 3D tissue-mimetic models. , 2011, ACS nano.

[7]  R. Duncan Nanomedicine(s) and their Regulation: An Overview , 2012 .

[8]  Yiota Gregoriou,et al.  Measuring properties of nanoparticles in embryonic blood vessels: Towards a physicochemical basis for nanotoxicity , 2010 .

[9]  A. Chalmers,et al.  RASSF7 is a member of a new family of RAS association domain-containing proteins and is required for completing mitosis. , 2008, Molecular biology of the cell.

[10]  Yan Li,et al.  Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage , 2008, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[11]  Kevin Braeckmans,et al.  Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro-in vivo gap. , 2013, Chemical Society reviews.

[12]  M. Morbidelli,et al.  Longitudinal Tracking of Human Fetal Cells Labeled with Super Paramagnetic Iron Oxide Nanoparticles in the Brain of Mice with Motor Neuron Disease , 2012, PloS one.

[13]  Iseult Lynch,et al.  What the cell "sees" in bionanoscience. , 2010, Journal of the American Chemical Society.

[14]  G. Wheeler,et al.  Xenopus: An ideal system for chemical genetics , 2012, Genesis.

[15]  W. Quint,et al.  Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification , 1993, Applied and environmental microbiology.

[16]  Keiran S. M. Smalley,et al.  Life ins't flat: Taking cancer biology to the next dimension , 2006, In Vitro Cellular & Developmental Biology - Animal.

[17]  Hazel Sive,et al.  Development of the primary mouth in Xenopus laevis. , 2006, Developmental biology.

[18]  Mehmet R Dokmeci,et al.  Toxicity of CdSe Nanoparticles in Caco-2 Cell Cultures , 2008, Journal of nanobiotechnology.

[19]  R. L. Jones,et al.  Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. , 2008, The journal of physical chemistry. B.

[20]  M. Berridge,et al.  Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. , 1993, Archives of biochemistry and biophysics.

[21]  Nastassja A. Lewinski,et al.  Cytotoxicity of nanoparticles. , 2008, Small.

[22]  J. Gurdon,et al.  Normal table of Xenopus laevis (Daudin) , 1995 .

[23]  R. Duncan,et al.  Nanomedicine(s) under the microscope. , 2011, Molecular pharmaceutics.

[24]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[25]  Sabine Szunerits,et al.  Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos , 2010 .

[26]  P. Hayes,et al.  Toxicology of ZnO and TiO2 nanoparticles on hepatocytes: Impact on metabolism and bioenergetics , 2015, Nanotoxicology.

[27]  Sara Linse,et al.  Polystyrene nanoparticles affecting blood coagulation. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[28]  Robert L. Tanguay,et al.  Gold nanoparticles disrupt zebrafish eye development and pigmentation. , 2013, Toxicological sciences : an official journal of the Society of Toxicology.

[29]  J. Howlin,et al.  A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion , 2009, Proceedings of the National Academy of Sciences.

[30]  W. Chan,et al.  Cytotoxic effect of CdSe quantum dots on mouse embryonic development , 2008, Acta Pharmacologica Sinica.

[31]  M. Camatini,et al.  Evidence and uptake routes for Zinc oxide nanoparticles through the gastrointestinal barrier in Xenopus laevis , 2013, Nanotoxicology.

[32]  Shaker A Mousa,et al.  Emerging nanopharmaceuticals. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[33]  Giridhar Thiagarajan,et al.  Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. , 2014, Biomaterials.

[34]  A. Brändli,et al.  Engineering Xenopus embryos for phenotypic drug discovery screening. , 2014, Advanced drug delivery reviews.

[35]  A. Colombo,et al.  Does carbon nanopowder threaten amphibian development , 2012 .

[36]  N. Kotov,et al.  In vitro toxicity testing of nanoparticles in 3D cell culture. , 2009, Small.

[37]  J. Gearhart,et al.  In vitro toxicity of nanoparticles in BRL 3A rat liver cells. , 2005, Toxicology in vitro : an international journal published in association with BIBRA.

[38]  Ick Chan Kwon,et al.  Multifunctional nanoparticles for multimodal imaging and theragnosis. , 2012, Chemical Society reviews.

[39]  F. W. Wolf,et al.  Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. , 1995, Journal of immunology.

[40]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[41]  Bengt Fadeel,et al.  Safety assessment of nanomaterials: implications for nanomedicine. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[42]  Hua Ai,et al.  Applications and potential toxicity of magnetic iron oxide nanoparticles. , 2013, Small.

[43]  V. Šubr,et al.  In Vivo Nanotoxicity Testing using the Zebrafish Embryo Assay. , 2013, Journal of materials chemistry. B.

[44]  Martin Mohr,et al.  Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways , 2010, Journal of The Royal Society Interface.

[45]  Naomi K Fukagawa,et al.  Assessing nanotoxicity in cells in vitro. , 2010, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[46]  I. Mouche,et al.  Frog embryo teratogenesis assay on Xenopus and predictivity compared with in vivo mammalian studies. , 2013, Methods in molecular biology.

[47]  G. Wheeler,et al.  Chemical genomics identifies compounds affecting Xenopus laevis pigment cell development. , 2009, Molecular bioSystems.

[48]  Amane Shiohara,et al.  On the Cyto‐Toxicity Caused by Quantum Dots , 2004, Microbiology and immunology.

[49]  Junchao Duan,et al.  Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae , 2013, PloS one.

[50]  V. Venditto,et al.  Cancer nanomedicines: so many papers and so few drugs! , 2013, Advanced drug delivery reviews.

[51]  E. Parati,et al.  Human Skeletal Muscle Stem Cell Antiinflammatory Activity Ameliorates Clinical Outcome in Amyotrophic Lateral Sclerosis Models , 2012, Molecular medicine.

[52]  Peter Wick,et al.  Nanotoxicology: an interdisciplinary challenge. , 2011, Angewandte Chemie.