Linearizing non-linear inverse problems and an application to inverse backscattering

We propose an abstract approach to prove local uniqueness and conditional Holder stability to non-linear inverse problems by linearization. The main condition is that, in addition to the injectivity of the linearization A, we need a stability estimate for A as well. That condition is satisfied in particular, if A∗A is an elliptic pseudo-differential operator. We apply this scheme to show uniqueness and Holder stability for the inverse backscattering problem for the acoustic equation near a constant sound speed.

[1]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[2]  V. Sharafutdinov Integral Geometry of Tensor Fields , 1994 .

[3]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[4]  Plamen Stefanov,et al.  Inverse backscattering for the acoustic equation , 1997 .

[5]  David Isaacson,et al.  Comment on Calderon's Paper: "On an Inverse Boundary Value Problem" , 1989 .

[6]  G. Eskin Inverse Scattering Problem in Anisotropic Media , 1998 .

[7]  Plamen Stefanov,et al.  Integral Geometry of Tensor Fields on a Class of Non-Simple Riemannian Manifolds , 2006 .

[8]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[9]  G. Uhlmann,et al.  Stability estimates for the X-ray transform of tensor fields and boundary rigidity , 2004 .

[10]  Plamen Stefanov,et al.  Boundary rigidity and stability for generic simple metrics , 2004, math/0408075.

[11]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[12]  G. Uhlmann,et al.  Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map , 2004, math/0410546.

[13]  Stability estimate for an inverse acoustic backscattering problem , 1998 .

[14]  Gunther Uhlmann Commentary on Calderón’s paper 28, On an Inverse Boundary Value Problem , 2006 .

[15]  Plamen Stefanov,et al.  Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds , 2007, math/0701595.

[16]  Scattering of waves by periodically moving bodies , 1982 .

[17]  Andrew Béla Frigyik,et al.  The X-Ray Transform for a Generic Family of Curves and Weights , 2007, math/0702065.

[18]  Giovanni Alessandrini Open issues of stability for the inverse conductivity problem , 2007 .

[19]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[20]  Jan Boman An example of non-uniqueness for a generalized Radon transform , 1993 .

[21]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[22]  Generic Uniqueness for Two Inverse Problems in POtential Scattering , 1992 .

[23]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[24]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .