Anthracene-based ortho-phenylenediamine clefts for sensing carboxylates

[1]  K. Ghosh,et al.  Anthracene coupled trans-pyridylcinnamide: a new fluororeceptor for selective sensing of dicarboxylates , 2008 .

[2]  K. Ghosh,et al.  An anthracene based bispyridinium amide receptor for selective sensing of anions , 2007 .

[3]  Philip A. Gale,et al.  Extending the Hydrogen-bonding Array in ortho-Phenylenediamine Based Bis-ureas , 2007 .

[4]  Daniel T. Thangadurai,et al.  Quinoxaline-imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer. , 2007, Organic letters.

[5]  Jonathan W Steed,et al.  A modular approach to anion binding podands: adaptability in design and synthesis leads to adaptability in properties. , 2006, Chemical communications.

[6]  Philip A. Gale,et al.  Structural and molecular recognition studies with acyclic anion receptors. , 2006, Accounts of chemical research.

[7]  Yuen-Kit Cheng,et al.  Cholic-acid-based fluorescent sensor for dicarboxylates and acidic amino acids in aqueous solutions. , 2005, Organic letters.

[8]  Philip A. Gale,et al.  ortho-Phenylenediamine bis-urea–carboxylate: a new reliable supramolecular synthon , 2005 .

[9]  Jongmin Kang,et al.  Iodide selective fluorescent anion receptor with two methylene bridged bis-imidazolium rings on naphthalene , 2005 .

[10]  Q. Meng,et al.  Conformational switching fluorescent chemosensor for chloride anion , 2005 .

[11]  A. Taglietti,et al.  Fluorescent detection of glutamate with a dicopper(II) polyamine cage , 2004 .

[12]  Juyoung Yoon,et al.  A new imidazolium cavitand for the recognition of dicarboxylates. , 2004, Organic letters.

[13]  M. Boiocchi,et al.  A dimetallic cage with a long ellipsoidal cavity for the fluorescent detection of dicarboxylate anions in water. , 2004, Angewandte Chemie.

[14]  Félix Sancenón,et al.  Fluorogenic and chromogenic chemosensors and reagents for anions. , 2003, Chemical reviews.

[15]  J. Gawroński,et al.  Bifunctional receptor triad for efficient recognition of mono- and dicarboxylic acids , 2003 .

[16]  Thawatchai Tuntulani,et al.  Chromogenic anion sensors. , 2003, Chemical Society reviews.

[17]  Joseph Raker,et al.  Selectivity via cooperative interactions: detection of dicarboxylates in water by a pinwheel chemosensor. , 2002, The Journal of organic chemistry.

[18]  T. Gunnlaugsson,et al.  Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral PET chemosensors. , 2002, Organic letters.

[19]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[20]  T. Prangé,et al.  Molecular Recognition of Azobenzene Dicarboxylates by Acridine‐Based Receptor Molecules; Crystal Structure of the Supramolecular Inclusion Complex of trans‐3,3′‐Azobenzene Dicarboxylate with a Cyclo‐bis‐intercaland Receptor , 1999 .

[21]  Ursula E. Spichiger-Keller,et al.  Chemical Sensors and Biosensors for Medical and Biological Applications , 1998 .

[22]  H. Kaneda,et al.  Anion sensing by a donor–spacer–acceptor system: an intra-molecular exciplex emission enhanced by hydrogen bond-mediated complexation , 1998 .

[23]  F. Schmidtchen,et al.  Artificial Organic Host Molecules for Anions. , 1997, Chemical reviews.

[24]  J. Sessler,et al.  A Covalently Linked Sapphyrin Dimer. A New Receptor for Dicarboxylate Anions , 1995 .

[25]  J. Lehn,et al.  Chiral recognition of aromatic carboxylate anions by an optically active abiotic receptor containing a rigid guanidinium binding subunit , 1989 .

[26]  K. A. Connors,et al.  Binding Constants: The Measurement of Molecular Complex Stability , 1987 .

[27]  C. Mason,et al.  Biology of Freshwater Pollution. , 1982 .