Chandra and XMM-Newton Observations of the First Quasars: X-Rays from the Age of Cosmic Enlightenment

We report on Chandra and XMM-Newton observations of a sample of 13 quasars at z ≈ 4.7–5.4 mostly taken from the Sloan Digital Sky Survey (SDSS). The present sample complements previous X-ray studies of z ≥ 4 quasars, in which the majority of the objects are optically more luminous and at lower redshifts. All but two of our quasars have been detected in the X-ray band, thus doubling the number of z ≥ 4.8 X-ray–detected quasars. The two nondetections are likely to be due to a short exposure time (SDSSp J033829.31+002156.3) and to the presence of intrinsic absorption (SDSSp J173744.87+582829.5). We confirm and extend to the highest redshifts the presence of a correlation between AB1450(1+z) magnitude and soft X-ray flux for z ≥ 4 quasars and the presence of a steeper optical–to–X-ray spectral energy distribution (parameterized by αox) for high-luminosity, high-redshift quasars than for lower luminosity, lower redshift quasars. The second effect is likely due to the known anticorrelation between αox and rest-frame 2500 Å luminosity, whose significance is confirmed via partial correlation analysis. The joint ≈2.5–36 keV rest-frame spectrum of the z > 4.8 SDSS quasars observed thus far by Chandra is well parameterized by a power law with photon index Γ = 1.84; this photon index is consistent with those of z ≈ 0–3 quasars and that obtained from joint spectral fitting of z ≈ 4.1–4.5 optically luminous Palomar Digital Sky Survey quasars. No evidence for widespread intrinsic X-ray absorption has been found (NH ≲ 4.0 × 1022 cm-2 on average at 90% confidence). We also obtained Hobby-Eberly Telescope (HET) photometric observations for eight of our target quasars. None of these shows significant (greater than 30%) optical variability over the time interval of a few years (in the observed frame) between the SDSS and HET observations.

[1]  F. Castander,et al.  High-Redshift X-Ray-Selected Quasars: CXOCY J125304.0−090737 Joins the Club , 2003 .

[2]  Mark W. Bautz,et al.  Advanced CCD imaging spectrometer (ACIS) instrument on the Chandra X-ray Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[3]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[4]  P. O’Brien,et al.  Serendipitous active galactic nuclei in the XMM—Newton fields of Markarian 205 and QSO 0130−403 , 2002, astro-ph/0210140.

[5]  M. Dietrich,et al.  Elemental Abundances in the Broad Emission Line Region of Quasars at Redshifts larger than 4 , 2002 .

[6]  W. Brandt,et al.  X-Ray Emission from Radio-Quiet Quasars in the Sloan Digital Sky Survey Early Data Release: The αox Dependence upon Ultraviolet Luminosity , 2002, astro-ph/0211125.

[7]  Astronomy,et al.  X-Ray Lighthouses of the High-Redshift Universe: Probing the Most Luminous z > 4 Palomar Digital Sky Survey Quasars with Chandra , 2002, astro-ph/0210475.

[8]  W. Brandt,et al.  CHANDRA Detects Relativistic Broad Absorption Lines from APM 08279+5255 , 2002, astro-ph/0207196.

[9]  M. Parrinello,et al.  Magnification of light from many distant quasars by gravitational lenses , 2002, Nature.

[10]  Z. Haiman,et al.  Constraining the Redshift z ~ 6 Quasar Luminosity Function Using Gravitational Lensing , 2002, astro-ph/0206441.

[11]  W. Brandt,et al.  Submitted to the Astronomical Journal , 2002 .

[12]  W. Brandt,et al.  The Luminosity Dependence of Ultraviolet Absorption in Active Galactic Nuclei , 2002 .

[13]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Quasar Catalog. I. Early Data Release , 2001, astro-ph/0110629.

[14]  J. Manners,et al.  The X‐ray variability of high‐redshift QSOs , 2001, astro-ph/0110461.

[15]  R. McMahon,et al.  The SCUBA Bright Quasar Survey (SBQS): 850-μm observations of the z>≳ 4 sample , 2001, astro-ph/0109438.

[16]  J. Shields,et al.  Emission-Line Properties of z > 4 Quasars , 2001, astro-ph/0109328.

[17]  J. Herder,et al.  The Reflection Grating Spectrometer on-board XMM-Newton: Status of the Calibrations , 2002 .

[18]  V. Narayanan,et al.  Evolution of the Ionizing Background and the Epoch of Reionization from the Spectra of z ∼ 6 Quasars , 2001, astro-ph/0111184.

[19]  J. Gunn,et al.  J-Band Spectroscopy of the z = 5.74 Broad Absorption Line Quasar SDSSp J104433.04–012502.2 , 2001 .

[20]  W. Brandt,et al.  X-Ray Spectroscopy of Quasi-Stellar Objects with Broad Ultraviolet Absorption Lines , 2001, astro-ph/0110579.

[21]  Astrophysics,et al.  The HELLAS2XMM Survey. I. The X-Ray Data and the log N-log S Relation , 2001, astro-ph/0108514.

[22]  D. Lamb,et al.  A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data , 2001, astro-ph/0108429.

[23]  Astrophysics,et al.  Exploratory Chandra Observations of the Highest-Redshift Quasars: X-Rays from the Dawn of the Modern Universe , 2001, astro-ph/0108001.

[24]  R. G. McMahon,et al.  A 1.2 mm MAMBO/IRAM-30 m survey of dust emission from the highest redshift PSS quasars , 2001, astro-ph/0107005.

[25]  P. Green,et al.  A Chandra Survey of Broad Absorption Line Quasars , 2001, astro-ph/0105258.

[26]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[27]  F. Mannucci,et al.  Discovery of strong CIV absorption in the highest redshift quasar , 2001, astro-ph/0104147.

[28]  Xiaohui Fan,et al.  A 250 GHz Survey of High-Redshift Quasars from the Sloan Digital Sky Survey , 2001, astro-ph/0103252.

[29]  P. Hall,et al.  Quasars in the 2MASS Second Incremental Data Release , 2001, astro-ph/0101270.

[30]  I. Hook,et al.  Absorption Systems in the Spectra of 66 z ≳ 4 Quasars , 2001, astro-ph/0101179.

[31]  I. Hook,et al.  The Second APM UKST Colour Survey for z > 4 quasars , 2000, astro-ph/0012446.

[32]  A. Loeb,et al.  The Reionization of the Universe by the First Stars and Quasars , 2000, astro-ph/0010467.

[33]  W. Brandt,et al.  Heavy X-Ray Absorption in Soft X-Ray-weak Active Galactic Nuclei , 2000, astro-ph/0007384.

[34]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[35]  W. Brandt,et al.  An XMM-Newton Detection of the z = 5.80 X-Ray-Weak Quasar SDSSp J104433.04-012502.2 , 2000, astro-ph/0010328.

[36]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[37]  et al,et al.  The Discovery of a Luminous z = 5.80 Quasar from the Sloan Digital Sky Survey , 2000, astro-ph/0005414.

[38]  A. Szalay,et al.  Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey , 2000, astro-ph/0005247.

[39]  J. Turner X‐ray spectra of a large sample of quasars with ASCA , 2000, astro-ph/0003080.

[40]  Brazil,et al.  Radio Properties of z > 4 Optically Selected Quasars , 2000, astro-ph/0001394.

[41]  W. Brandt,et al.  The X-Ray Properties of z > 4 Quasars , 2000, astro-ph/0001299.

[42]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[43]  A. Loeb,et al.  High-Redshift Galaxies: Their Predicted Size and Surface Brightness Distributions and Their Gravitational Lensing Probability , 1999, astro-ph/9906398.

[44]  K. Nandra,et al.  X-Ray Observations of Optically Selected, Radio-quiet Quasars. I. The ASCA Results , 1999, astro-ph/9910218.

[45]  R. McMahon,et al.  Submillimetre observations of luminous z>4 radio-quiet quasars and the contribution of AGN to the submm source population , 1999, astro-ph/9907239.

[46]  W. N. Brandt,et al.  On the Nature of Soft X-Ray Weak Quasi-stellar Objects , 1999, astro-ph/9908016.

[47]  M. Rees The end of the ‘dark age’ , 1999 .

[48]  G. Ferland,et al.  Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts , 1999, astro-ph/9904223.

[49]  E. O. Smith,et al.  After the dark ages : when galaxies were young (the universe at 2 < z < 5) : ninth astrophysics conference, College Park, Maryland October 1998 , 1999 .

[50]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[51]  G. Palumbo,et al.  Probing the Hard X-Ray Properties of High-Redshift Radio-Quiet Quasars with ASCA , 1998, astro-ph/9812176.

[52]  Niall Gaffney,et al.  Early performance and present status of the Hobby-Eberly Telescope , 1998, Astronomical Telescopes and Instrumentation.

[53]  Gary J. Hill,et al.  Hobby-Eberly Telescope low-resolution spectrograph: optical design , 1998, Astronomical Telescopes and Instrumentation.

[54]  Phillip J. MacQueen,et al.  Hobby-Eberly Telescope low-resolution spectrograph , 1998, Astronomical Telescopes and Instrumentation.

[55]  D. Schneider,et al.  Discovery of an X-Ray-selected Quasar with a Redshift of 4.45 , 1998 .

[56]  G. Palumbo,et al.  ASCA and ROSAT X-Ray Spectra of High-Redshift Radio-loud Quasars , 1996, astro-ph/9610204.

[57]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[58]  Matthew A. Bershady,et al.  Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter , 1996, astro-ph/9605002.

[59]  Michael G. Akritas,et al.  A test for partial correlation with censored astronomical data , 1996 .

[60]  Y. Avni,et al.  The Underlying Distribution of Optical to X-Ray Spectral Index for Quasars in the Presence of Detection Thresholds , 1995 .

[61]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[62]  J. Gunn,et al.  Differential evolution of radio quiet and radio loud quasars , 1995 .

[63]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[64]  E. Feigelson,et al.  PUBLIC SOFTWARE FOR THE ASTRONOMER: AN OVERVIEW , 1992 .

[65]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[66]  Louis Lyons,et al.  Book-Review - a Practical Guide to Data Analysis for Physical Science Students , 1992 .

[67]  D. Burrows,et al.  Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .

[68]  D. Schneider,et al.  Moderate resolution spectrophotometry of high redshift quasars , 1991 .

[69]  D. York,et al.  An inhomogeneous reference catalogue of identified intervening heavy element systems in spectra of QSOs , 1991 .

[70]  D. Crampton The space distribution of quasars , 1991 .

[71]  D. Schade,et al.  The Space Distribution of Quasars , 1990 .

[72]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[73]  J. Gunn,et al.  PC 1158 + 4635 - An optically selected quasar with a redshift of 4. 73 , 1989 .

[74]  Maarten Schmidt,et al.  VLA observations of objects in the Palomar Bright Quasar Survey , 1989 .

[75]  G. Zamorani,et al.  The X-ray spectra of the extragalactic sources in the Einstein extended medium sensitivity survey , 1988 .

[76]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[77]  Richard F. Green,et al.  Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys. , 1983 .

[78]  M. Begelman Can a spherically accreting black hole radiate very near the Eddington limit , 1979 .

[79]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[80]  Y. Avni,et al.  Energy spectra of X-ray clusters of galaxies , 1976 .

[81]  Douglas M. Eardley,et al.  Black Holes in Binary Systems: Instability of Disk Accretion , 1974 .