Sieve weights and their smoothings
暂无分享,去创建一个
Andrew Granville | James Maynard | Dimitris Koukoulopoulos | A. Granville | J. Maynard | Dimitris Koukoulopoulos
[1] G. Tenenbaum,et al. Sur une somme liée à la fonction de Möbius. , 1983 .
[2] H. Iwaniec,et al. Analytic Number Theory , 2004 .
[3] Michael Rosen,et al. Number Theory in Function Fields , 2002 .
[4] Yitang Zhang. Bounded gaps between primes , 2014 .
[5] Primes in tuples I , 2005, math/0508185.
[6] Jessika Eichel,et al. Introduction To Analytic And Probabilistic Number Theory , 2016 .
[7] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[8] Dimitris Koukoulopoulos,et al. Localized factorizations of integers , 2008, 0809.1072.
[9] Andrew Granville,et al. Cycle Lengths in a Permutation are Typically Poisson , 2006, Electron. J. Comb..
[10] John B. Friedlander,et al. Opera De Cribro , 2010 .
[11] R. D. L. Bretèche,et al. Estimation de sommes multiples de fonctions arithmétiques , 2001, Compositio Mathematica.
[12] Dimitris Koukoulopoulos. On multiplicative functions which are small on average , 2011, Geometric and Functional Analysis.
[13] Sifting short intervals , 1982 .
[14] K. Ford. The distribution of integers with a divisor in a given interval , 2004, math/0401223.
[15] Permutations fixing a k-set , 2015, 1507.04465.
[16] R. Baker. DIVISORS (Cambridge Tracts in Mathematics 90) , 1989 .
[17] G. L.. Collected Papers , 1912, Nature.
[18] Dimitris Koukoulopoulos. Pretentious multiplicative functions and the prime number theorem for arithmetic progressions , 2012, Compositio Mathematica.
[19] D. Goss. NUMBER THEORY IN FUNCTION FIELDS (Graduate Texts in Mathematics 210) , 2003 .
[20] P. Pollack. Bounded gaps between primes with a given primitive root , 2014, 1404.4007.
[21] Yitang Zhang. Small gaps between primes , 2015 .
[22] P Erdős At Budapest,et al. On the Möbius function , .
[23] H. Davenport. Multiplicative Number Theory , 1967 .