Sieve weights and their smoothings

We obtain asymptotic formulas for the $2k$th moments of partially smoothed divisor sums of the Mobius function. When $2k$ is small compared with $A$, the level of smoothing, then the main contribution to the moments come from integers with only large prime factors, as one would hope for in sieve weights. However if $2k$ is any larger, compared with $A$, then the main contribution to the moments come from integers with quite a few prime factors, which is not the intention when designing sieve weights. The threshold for "small" occurs when $A=\frac 1{2k} \binom{2k}{k}-1$. One can ask analogous questions for polynomials over finite fields and for permutations, and in these cases the moments behave rather differently, with even less cancellation in the divisor sums. We give, we hope, a plausible explanation for this phenomenon, by studying the analogous sums for Dirichlet characters, and obtaining each type of behaviour depending on whether or not the character is "exceptional".

[1]  G. Tenenbaum,et al.  Sur une somme liée à la fonction de Möbius. , 1983 .

[2]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[3]  Michael Rosen,et al.  Number Theory in Function Fields , 2002 .

[4]  Yitang Zhang Bounded gaps between primes , 2014 .

[5]  Primes in tuples I , 2005, math/0508185.

[6]  Jessika Eichel,et al.  Introduction To Analytic And Probabilistic Number Theory , 2016 .

[7]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[8]  Dimitris Koukoulopoulos,et al.  Localized factorizations of integers , 2008, 0809.1072.

[9]  Andrew Granville,et al.  Cycle Lengths in a Permutation are Typically Poisson , 2006, Electron. J. Comb..

[10]  John B. Friedlander,et al.  Opera De Cribro , 2010 .

[11]  R. D. L. Bretèche,et al.  Estimation de sommes multiples de fonctions arithmétiques , 2001, Compositio Mathematica.

[12]  Dimitris Koukoulopoulos On multiplicative functions which are small on average , 2011, Geometric and Functional Analysis.

[13]  Sifting short intervals , 1982 .

[14]  K. Ford The distribution of integers with a divisor in a given interval , 2004, math/0401223.

[15]  Permutations fixing a k-set , 2015, 1507.04465.

[16]  R. Baker DIVISORS (Cambridge Tracts in Mathematics 90) , 1989 .

[17]  G. L. Collected Papers , 1912, Nature.

[18]  Dimitris Koukoulopoulos Pretentious multiplicative functions and the prime number theorem for arithmetic progressions , 2012, Compositio Mathematica.

[19]  D. Goss NUMBER THEORY IN FUNCTION FIELDS (Graduate Texts in Mathematics 210) , 2003 .

[20]  P. Pollack Bounded gaps between primes with a given primitive root , 2014, 1404.4007.

[21]  Yitang Zhang Small gaps between primes , 2015 .

[22]  P Erdős At Budapest,et al.  On the Möbius function , .

[23]  H. Davenport Multiplicative Number Theory , 1967 .