Reconstructing surfaces of particle-based fluids using anisotropic kernels

In this paper we present a novel surface reconstruction method for particle-based fluid simulators such as Smoothed Particle Hydrodynamics. In particle-based simulations, fluid surfaces are usually defined as a level set of an implicit function. We formulate the implicit function as a sum of anisotropic smoothing kernels, and the direction of anisotropy at a particle is determined by performing Principal Component Analysis (PCA) over the neighboring particles. In addition, we perform a smoothing step that re-positions the centers of these smoothing kernels. Since these anisotropic smoothing kernels capture the local particle distributions more accurately, our method has advantages over existing methods in representing smooth surfaces, thin streams and sharp features of fluids. Our method is fast, easy to implement, and our results demonstrate a significant improvement in the quality of reconstructed surfaces as compared to existing methods.

[1]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[2]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[3]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[4]  Mathieu Desbrun,et al.  Active Implicit Surface for Animation , 1998, Graphics Interface.

[5]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions: Research Articles , 2007 .

[6]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[7]  Gabriel Taubin,et al.  Geometric Signal Processing on Polygonal Meshes , 2000, Eurographics.

[8]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[9]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[10]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[11]  Ulrich Rüde,et al.  Detail-preserving fluid control , 2006, Symposium on Computer Animation.

[12]  Amitabh Varshney,et al.  Statistical Point Geometry , 2003, Symposium on Geometry Processing.

[13]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[14]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[15]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[16]  Matthias Teschner,et al.  Corotated SPH for Deformable Solids , 2009, NPH.

[17]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[18]  Bart Adams,et al.  Meshless Approximation Methods and Applications in Physics Based Modeling and Animation , 2009, Eurographics.

[19]  Brent Warren Williams,et al.  Fluid surface reconstruction from particles , 2008 .

[20]  Matthias Teschner,et al.  Direct Forcing for Lagrangian Rigid-Fluid Coupling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[21]  Robert Bridson,et al.  Robust Topological Operations for Dynamic Explicit Surfaces , 2009, SIAM J. Sci. Comput..

[22]  Jessica K. Hodgins,et al.  A point-based method for animating incompressible flow , 2009, SCA '09.

[23]  Guirong Liu,et al.  Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength , 2006 .

[24]  J. Owen,et al.  Adaptive Smoothed Particle Hydrodynamics: Methodology. II. , 1995, astro-ph/9512078.

[25]  Matthias Teschner,et al.  Interaction of fluids with deformable solids: Research Articles , 2004 .

[26]  M. Gross,et al.  Deforming meshes that split and merge , 2009, SIGGRAPH 2009.

[27]  Yehuda Koren,et al.  Visualization of labeled data using linear transformations , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[28]  Greg Turk,et al.  Reconstructing surfaces using anisotropic basis functions , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[29]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[30]  James F. O'Brien,et al.  A semi-Lagrangian contouring method for fluid simulation , 2005, TOGS.

[31]  Matthias Müller,et al.  Fast and robust tracking of fluid surfaces , 2009, SCA '09.

[32]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[33]  J. Strain A Fast Semi-Lagrangian Contouring Method for Moving Interfaces , 2001 .

[34]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[35]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, SIGGRAPH 2007.

[36]  B. Adams,et al.  Porous flow in particle-based fluid simulations , 2008, SIGGRAPH 2008.

[37]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[38]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[39]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .