Neutrino - pasta scattering: The Opacity of nonuniform neutron - rich matter

Neutron-rich matter at subnuclear densities may involve complex structures displaying a variety of shapes, such as spherical, slablike, and∕or rodlike shapes. These phases of the nuclear pasta are expected to exist in the crust of neutron stars and in core-collapse supernovae. The dynamics of core-collapse supernovae is very sensitive to the interactions between neutrinos and nucleons∕nuclei. Indeed, neutrino excitation of the low-energy modes of the pasta may allow for a significant energy transfer to the nuclear medium, thereby reviving the stalled supernovae shock. The linear response of the nuclear pasta to neutrinos is modeled via a simple semiclassical simulation. The transport mean free path for $\ensuremath{\mu}$ and $\ensuremath{\tau}$ neutrinos (and antineutrinos) is expressed in terms of the static structure factor of the pasta, which is evaluated using Metropolis Monte Carlo simulations.

[1]  T. Ebisuzaki,et al.  Structure of cold nuclear matter at subnuclear densities by Quantum Molecular Dynamics , 2003, nucl-th/0308007.

[2]  S. Jeschonnek,et al.  Quark-hadron duality in a relativistic, confining model , 2002, hep-ph/0201113.

[3]  C. Horowitz Weak magnetism for antineutrinos in supernovae , 2001, astro-ph/0109209.

[4]  P. Ring,et al.  Pygmy dipole resonances in relativistic random phase approximation , 2000, nucl-th/0009057.

[5]  G. Bertsch,et al.  First order phase transitions in neutron star matter: droplets and coherent neutrino scattering , 1999, nucl-th/9909040.

[6]  S. Chiba,et al.  Quantum Molecular Dynamics Approach to the Nuclear Matter Below the Saturation Density , 1997, nucl-th/9705039.

[7]  C. Horowitz Neutrino trapping in a supernova and the screening of weak neutral currents , 1997 .

[8]  Camacho Entropic Barriers, Frustration, and Order: Basic Ingredients in Protein Folding. , 1996, Physical review letters.

[9]  H. Toki,et al.  Neutron star profiles in the relativistic Brueckner-Hartree-Fock theory , 1995 .

[10]  Hung T. Diep,et al.  Magnetic Systems With Competing Interactions , 1994 .

[11]  K. Oyamatsu,et al.  Nuclear shapes in the inner crust of a neutron star , 1993 .

[12]  C. Pethick,et al.  Neutron star crusts. , 1993, Physical review letters.

[13]  F. Swesty,et al.  A Generalized equation of state for hot, dense matter , 1991 .

[14]  H. Stöcker,et al.  Clustering in nuclear matter at subsaturation densities , 1991 .

[15]  Pandharipande,et al.  Classical simulations of heavy-ion collisions. , 1987, Physical review. C, Nuclear physics.

[16]  M. Igashira,et al.  Systematics of the Pygmy Resonance in keV Neutron Capture γ-Ray Spectra of Nuclei with N=82-126 , 1986 .

[17]  Rainer Liebmann,et al.  Statistical Mechanics of Periodic Frustrated Ising Systems , 1986 .

[18]  Steven E. Koonin,et al.  Sub-saturation phases of nuclear matter , 1985 .

[19]  Masami Yamada,et al.  Shape of Nuclei in the Crust of Neutron Star , 1984 .

[20]  D. G. Ravenhall,et al.  Structure of matter below nuclear saturation density , 1983 .

[21]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[22]  A. Bodmer,et al.  Classical-equations-of-motion calculations of high-energy heavy-ion collisions , 1980 .

[23]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[24]  D. Schramm,et al.  The Weak Neutral Current and its Effects in Stellar Collapse , 1977 .

[25]  J. Villain Spin glass with non-random interactions , 1977 .

[26]  S. Chin A relativistic many-body theory of high density matter. , 1977 .

[27]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[28]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[29]  G. Wannier,et al.  Antiferromagnetism. The Triangular Ising Net , 1950 .