A Cutting-Plane Neighborhood Structure for Fixed-Charge Capacitated Multicommodity Network Design Problem

In this paper, a cutting-plane neighborhood structure is proposed for the fixed-charge capacitated multicommodity network design (CMND) problem. In the proposed structure, different strategies are used to select an open arc in the incumbent solution to be closed. Then a linear programming (LP) model is generated on the basis of the modified incumbent solution by relaxing binary variables and adding new constraints. The generated LP solution is improved using different cutting-plane inequalities. Subsequently, a new sub-mixed integer programming (MIP) model is created by fixing a number of variables in the generated LP solution. Then the local branching algorithm is used to solve the sub-MIP model and its solution is considered as a neighboring solution. A tabu search algorithm is used to evaluate the proposed neighborhood structure. To tune the parameters of the tabu search algorithm, we have used the design of experiments method. Standard problems with different sizes are employed to evaluate the proposed tabu search algorithm. Results show the efficiency and effectiveness of the tabu search algorithm compared to the best methods found in the literature.

[1]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[2]  Orhan Engin,et al.  Investigation of Ant System parameter interactions by using design of experiments for job-shop scheduling problems , 2009, Comput. Ind. Eng..

[3]  Michel Minoux,et al.  Networks synthesis and optimum network design problems: Models, solution methods and applications , 1989, Networks.

[4]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[5]  Laurence A. Wolsey,et al.  Solving Mixed Integer Programming Problems Using Automatic Reformulation , 1987, Oper. Res..

[6]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[7]  Pierre Dejax,et al.  Models for multimode multicommodity location problems with interdepot balancing requirements , 1990 .

[8]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[9]  Antonio Frangioni,et al.  0-1 Reformulations of the Multicommodity Capacitated Network Design Problem , 2009, Discret. Appl. Math..

[10]  Laurence A. Wolsey,et al.  Valid Linear Inequalities for Fixed Charge Problems , 1985, Oper. Res..

[11]  M. Chen,et al.  A capacity scaling heuristic for the multicommodity capacitated network design problem , 2009, J. Comput. Appl. Math..

[12]  Martin W. P. Savelsbergh,et al.  Lifted Cover Inequalities for 0-1 Integer Programs: Complexity , 1999, INFORMS J. Comput..

[13]  Juan-José Salazar-González,et al.  A local branching heuristic for the capacitated fixed-charge network design problem , 2010 .

[14]  Erwin Kreyszig,et al.  Introductory Mathematical Statistics. , 1970 .

[15]  Teodor Gabriel Crainic,et al.  Service network design in freight transportation , 2000, Eur. J. Oper. Res..

[16]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[17]  Daniel Kudenko,et al.  Tuning an Algorithm Using Design of Experiments , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[18]  Michel Gendreau,et al.  A Scatter Search Heuristic for the Fixed-Charge Capacitated Network Design Problem , 2007, Metaheuristics.

[19]  Michel Gendreau,et al.  Path Relinking, Cycle-Based Neighbourhoods and Capacitated Multicommodity Network Design , 2004, Ann. Oper. Res..

[20]  Martin W. P. Savelsbergh,et al.  Combining Exact and Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem , 2010, INFORMS J. Comput..

[21]  José Luis González Velarde,et al.  Scatter Search for Network Design Problem , 2005, Ann. Oper. Res..

[22]  Claude Le Pape,et al.  Exploring relaxation induced neighborhoods to improve MIP solutions , 2005, Math. Program..

[23]  Teodor Gabriel Crainic,et al.  Bundle-based relaxation methods for multicommodity capacitated fixed charge network design , 2001, Discret. Appl. Math..

[24]  Masoud Yaghini,et al.  A hybrid metaheuristic approach for the capacitated p-median problem , 2013, Appl. Soft Comput..

[25]  Alysson M. Costa,et al.  Benders, metric and cutset inequalities for multicommodity capacitated network design , 2009, Comput. Optim. Appl..

[26]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[27]  Teodor Gabriel Crainic,et al.  A first multilevel cooperative algorithm for capacitated multicommodity network design , 2006, Comput. Oper. Res..

[28]  Teodor Gabriel Crainic,et al.  RELAXATIONS FOR MULTICOMMODITY CAPACITATED NETWORK DESIGN PROBLEMS. , 1994 .

[29]  Teodor Gabriel Crainic,et al.  BOUNDING PROCEDURES FOR MULTICOMMODITY CAPACITATED FIXED CHARGE NETWORK DESIGN PROBLEMS. , 1995 .

[30]  Vaidyanathan Jayaraman,et al.  Production , Manufacturing and Logistics A simulated annealing methodology to distribution network design and management , 2002 .

[31]  Christian Blum,et al.  Hybrid metaheuristics in combinatorial optimization: A survey , 2011, Appl. Soft Comput..

[32]  Michel Gendreau,et al.  A Simplex-Based Tabu Search Method for Capacitated Network Design , 2000, INFORMS J. Comput..

[33]  Michel Gendreau,et al.  Cooperative Parallel Tabu Search for Capacitated Network Design , 2002, J. Heuristics.

[34]  Di Yuan,et al.  A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capacitated Network Design Problem , 2000, Oper. Res..

[35]  Daniel Kudenko,et al.  Tuning the Performance of the MMAS Heuristic , 2007, SLS.

[36]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[37]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[38]  Mauro Dell'Amico,et al.  Annotated Bibliographies in Combinatorial Optimization , 1997 .

[39]  Jan Stallaert The Complementary Class of Generalized Flow Cover Inequalities , 1997, Discret. Appl. Math..

[40]  Teodor Gabriel Crainic,et al.  A Slope Scaling/Lagrangean Perturbation Heuristic with Long-Term Memory for Multicommodity Capacitated Fixed-Charge Network Design , 2004, J. Heuristics.

[41]  Alper Atamtürk,et al.  Flow pack facets of the single node fixed-charge flow polytope , 2001, Oper. Res. Lett..

[42]  Mervat Chouman,et al.  A MIP-Tabu Search Hybrid Framework for Multicommodity Capacitated Fixed-Charge Network Design , 2010 .

[43]  Teodor Gabriel Crainic,et al.  Multicommodity Capacitated Network Design , 1999 .

[44]  Michel Minoux,et al.  Polynomial approximation schemes and exact algorithms for optimum curve segmentation problems , 2004, Discret. Appl. Math..

[45]  Michel Minoux,et al.  Discrete Cost Multicommodity Network Optimization Problems and Exact Solution Methods , 2001, Ann. Oper. Res..

[46]  Mervat Chouman,et al.  A Cutting-Plane Algorithm for Multicommodity Capacitated Fixed-Charge Network Design , 2009 .

[47]  Masoud Yaghini,et al.  A Hybrid Simulated Annealing and Simplex Method for Fixed-Cost Capacitated Multicommodity Network Design , 2011, Int. J. Appl. Metaheuristic Comput..

[48]  Michel Gendreau,et al.  Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design , 2003, Oper. Res..