Stone Relation Algebras

We study a generalisation of relation algebras in which the underlying Boolean algebra structure is replaced with a Stone algebra. Many theorems of relation algebras generalise with no or small changes. Weighted graphs represented as matrices over extended real numbers form an instance. Relational concepts and methods can thus be applied to weighted graphs. All results are formally verified in Isabelle/HOL.

[1]  G. Grätzer,et al.  Lattice Theory: First Concepts and Distributive Lattices , 1971 .

[2]  Andre Scedrov,et al.  Categories, allegories , 1990, North-Holland mathematical library.

[3]  Bernhard Möller,et al.  Dijkstra, Floyd and Warshall meet Kleene , 2012, Formal Aspects of Computing.

[4]  Szabolcs Mikulás,et al.  Axiomatizability of positive algebras of binary relations , 2011 .

[5]  Roger D. Maddux,et al.  Relation-Algebraic Semantics , 1996, Theor. Comput. Sci..

[6]  Hugo Daniel Macedo,et al.  A linear algebra approach to OLAP , 2014, Formal Aspects of Computing.

[7]  Haskell B. Curry,et al.  Foundations of Mathematical Logic , 1964 .

[8]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[9]  Richard S. Bird,et al.  Algebra of programming , 1997, Prentice Hall International series in computer science.

[10]  Gunther Schmidt,et al.  Relationen und Graphen , 1989, Mathematik für Informatiker.

[11]  José Nuno Oliveira,et al.  Extended Static Checking by Calculation Using the Pointfree Transform , 2009, LerNet ALFA Summer School.

[12]  S. D. Comer,et al.  On connections between information systems, rough sets and algebraic logic , 1993 .

[13]  Harrie C. M. de Swart,et al.  Computing tournament solutions using relation algebra and RelView , 2013, Eur. J. Oper. Res..

[14]  Gunther Schmidt,et al.  Relations and Graphs , 1993, EATCS Monographs on Theoretical Computer Science.

[15]  Rudolf Berghammer,et al.  Closure, Properties and Closure Properties of Multirelations , 2015, RAMiCS.

[16]  Teo Asplund,et al.  Formalizing the Kleene Star for Square Matrices , 2014 .

[17]  J. Conway Regular algebra and finite machines , 1971 .

[18]  Walter Guttmann,et al.  Stone Algebras , 2016, Arch. Formal Proofs.

[19]  Michael Winter,et al.  Relations among Matrices over a Semiring , 2015, RAMICS.

[20]  Georg Struth,et al.  Relation Algebra , 2014, Arch. Formal Proofs.

[21]  Michael Winter,et al.  A new algebraic approach to L-fuzzy relations convenient to study crispness , 2001, Inf. Sci..

[22]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[23]  Yasuo Kawahara,et al.  Crispness in Dedekind Categories , 2001, RelMiCS.

[24]  B. M. Schein,et al.  Representations of ordered semigroups and lattices by binary relations , 1978 .

[25]  Andreas Wolf,et al.  Relation-Algebraic Derivation of Spanning Tree Algorithms , 1998, MPC.

[26]  Tobias Nipkow,et al.  Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.

[27]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[28]  Jasmin Christian Blanchette,et al.  Three years of experience with Sledgehammer, a Practical Link Between Automatic and Interactive Theorem Provers , 2012, IWIL@LPAR.

[29]  Yasuo Kawahara,et al.  Kyushu University Institutional Repository Categorical Representation Theorems of Fuzzy Relations , 2022 .

[30]  GondranM.,et al.  Dioïds and semirings , 2007 .

[31]  David Peleg,et al.  Concurrent dynamic logic , 1985, STOC '85.

[32]  T. Blyth Lattices and Ordered Algebraic Structures , 2005 .

[33]  Georg Struth,et al.  Kleene Algebra , 2013, Arch. Formal Proofs.

[34]  Sebastian Fischer,et al.  Combining relation algebra and data refinement to develop rectangle-based functional programs for reflexive-transitive closures , 2015, J. Log. Algebraic Methods Program..

[35]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[36]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[37]  Walter Guttmann,et al.  Relation-Algebraic Verification of Prim's Minimum Spanning Tree Algorithm , 2016, ICTAC.

[38]  Roger D. Maddux,et al.  Relation Algebras , 1997, Relational Methods in Computer Science.

[39]  I. Hodkinson,et al.  Relation Algebras by Games , 2002 .

[40]  Jules Desharnais,et al.  Relational style laws and constructs of linear algebra , 2014, J. Log. Algebraic Methods Program..

[41]  H. Priestley,et al.  Distributive Lattices , 2004 .

[42]  Roland Carl Backhouse,et al.  Fixed-Point Calculus , 1995, Inf. Process. Lett..

[43]  Georg Struth,et al.  Program Construction and Verification Components Based on Kleene Algebra , 2016, Arch. Formal Proofs.

[44]  Georg Struth,et al.  Internal axioms for domain semirings , 2011, Sci. Comput. Program..

[45]  Rudolf Berghammer,et al.  Relational Semantics of Functional Programs , 1997, Relational Methods in Computer Science.

[46]  Rohit Parikh Propositional Logics of Programs: New Directions , 1983, FCT.

[47]  Zdzislaw Pawlak,et al.  Rough Sets, Rough Relations and Rough Functions , 1996, Fundam. Informaticae.

[48]  Rudolf Berghammer Ordnungen, Verbände und Relationen mit Anwendungen , 2012 .

[49]  Walter Guttmann,et al.  Algebras for iteration and infinite computations , 2012, Acta Informatica.

[50]  J. Goguen L-fuzzy sets , 1967 .

[51]  R. Backhouse,et al.  Regular Algebra Applied to Path-finding Problems , 1975 .

[52]  Gunther Schmidt,et al.  Relational Mathematics , 2010, Encyclopedia of Mathematics and its Applications.

[53]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[54]  Lawrence C. Paulson,et al.  Extending Sledgehammer with SMT Solvers , 2011, Journal of Automated Reasoning.