Neurophysiological and Optogenetic Assessment of Brain Networks Involved in Motor Control

[1]  Philip J. Hahn,et al.  Network perspectives on the mechanisms of deep brain stimulation , 2010, Neurobiology of Disease.

[2]  Antonio Daniele,et al.  Treatment of motor and non-motor features of Parkinson's disease with deep brain stimulation , 2012, The Lancet Neurology.

[3]  Cristina Tassorelli,et al.  Functional changes of the basal ganglia circuitry in Parkinson's disease , 2000, Progress in Neurobiology.

[4]  C. McIntyre,et al.  Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. , 2002, Journal of neurophysiology.

[5]  Abdelhamid Benazzouz,et al.  Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data , 1995, Neuroscience Letters.

[6]  A. Benabid,et al.  Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. , 1987, Applied neurophysiology.

[7]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[8]  E. Shipton Movement Disorders and Neuromodulation , 2012, Neurology research international.

[9]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[10]  M Tagliati,et al.  Subthalamic deep brain stimulation and impulse control in Parkinson’s disease , 2009, European journal of neurology.

[11]  P. Gatev,et al.  Oscillations in the basal ganglia under normal conditions and in movement disorders , 2006, Movement disorders : official journal of the Movement Disorder Society.

[12]  A L Benabid,et al.  [Effects of the stimulation of the subthalamic nucleus in Parkinson disease]. , 1993, Revue neurologique.

[13]  P. Brown,et al.  The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[14]  P. Stanzione,et al.  Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. , 2007, Brain : a journal of neurology.

[15]  Danny C. W. Chan,et al.  Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex , 2012, Neuron.

[16]  J. Mink,et al.  Blood flow responses to deep brain stimulation of thalamus , 2002, Neurology.

[17]  Feng Zhang,et al.  An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology , 2007, Journal of neural engineering.

[18]  A. Lozano,et al.  Subthalamic deep brain stimulation at individualized frequencies for Parkinson disease , 2012, Neurology.

[19]  R. P. Maguire,et al.  Disease progression continues in patients with advanced Parkinson’s disease and effective subthalamic nucleus stimulation , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[20]  C. McIntyre,et al.  Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. , 2004, Journal of neurophysiology.

[21]  B. Guthrie,et al.  Short latency activation of cortex by clinically effective thalamic brain stimulation for tremor , 2012, Movement disorders : official journal of the Movement Disorder Society.

[22]  E. Bézard,et al.  Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms , 1999, The European journal of neuroscience.

[23]  A. Benabid,et al.  Subthalamic Nucleus Lesion in Rats Prevents Dopaminergic Nigral Neuron Degeneration After Striatal 6‐OHDA Injection: Behavioural and Immunohistochemical Studies , 1996, The European journal of neuroscience.

[24]  S. Gill,et al.  Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson's disease , 2005, Neuroreport.

[25]  K. Deisseroth,et al.  Optogenetic investigation of neural circuits underlying brain disease in animal models , 2012, Nature Reviews Neuroscience.

[26]  A. Cavanna,et al.  Impulse Control Disorders Following Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson's Disease: Clinical Aspects , 2011, Parkinson's disease.

[27]  A. Benabid,et al.  Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. , 2007, Brain : a journal of neurology.

[28]  S. T. Kitai,et al.  Inhibitory substantia nigra inputs to the pedunculopontine neurons , 2004, Experimental Brain Research.

[29]  Jing Wang,et al.  Approaches to optical neuromodulation from rodents to non-human primates by integrated optoelectronic devices , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[30]  Kendall H. Lee,et al.  Integrative Neuroscience Review Article Moving Forward: Advances in the Treatment of Movement Disorders with Deep Brain Stimulation , 2022 .

[31]  Marwan Hariz,et al.  Long‐term efficacy of thalamic deep brain stimulation for tremor: Double‐blind assessments , 2003, Movement disorders : official journal of the Movement Disorder Society.

[32]  W. C. Hall,et al.  High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice , 2007, Proceedings of the National Academy of Sciences.

[33]  J. Moringlane,et al.  Thalamic stimulation for essential tremor activates motor and deactivates vestibular cortex , 2001, Neurology.

[34]  Luis de Lecea,et al.  Optogenetic investigation of neural circuits in vivo. , 2011, Trends in molecular medicine.

[35]  Yasin Temel,et al.  Impulse control and related disorders in Parkinson's disease patients treated with bilateral subthalamic nucleus stimulation: a review. , 2011, Parkinsonism & related disorders.

[36]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[37]  P. Winn,et al.  The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation , 1995, Progress in Neurobiology.

[38]  G Bernardi,et al.  Deep brain stimulation in Parkinson's disease patients: biochemical evidence. , 2006, Journal of neural transmission. Supplementum.

[39]  Anatol C. Kreitzer,et al.  Optogenetic manipulation of neural circuitry in vivo , 2011, Current Opinion in Neurobiology.

[40]  P. Stanzione,et al.  Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson's disease , 2005, Neuroreport.

[41]  A. Upton,et al.  Reversibility of chronic neurologic deficits. Some effects of electrical stimulation of the thalamus and internal capsule in man. , 1980, Applied neurophysiology.

[42]  Erwin B. Montgomery,et al.  Mechanisms of action of deep brain stimulation (DBS) , 2008, Neuroscience & Biobehavioral Reviews.

[43]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[44]  R. Gross,et al.  The clinical utility of methods to determine spatial extent and volume of tissue activated by deep brain stimulation , 2008, Clinical Neurophysiology.

[45]  G. Deuschl,et al.  Subthalamic deep brain stimulation increases pallidal firing rate and regularity , 2011, Experimental Neurology.

[46]  Philippe Mailly,et al.  Evidence for a direct subthalamo‐cortical loop circuit in the rat , 2008, The European journal of neuroscience.

[47]  Jaimie M. Henderson,et al.  The STN beta-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation , 2009, Experimental Neurology.

[48]  M. Feany,et al.  Parkinson's disease: Insights from non-traditional model organisms , 2010, Progress in Neurobiology.

[49]  Tomasz Mandat,et al.  Deep Brain Stimulation for Movement Disorders , 2012, Front. Integr. Neurosci..

[50]  Peter T Fox,et al.  A noninvasive imaging approach to understanding speech changes following deep brain stimulation in Parkinson's disease. , 2009, American journal of speech-language pathology.

[51]  Dae-Shik Kim,et al.  Global and local fMRI signals driven by neurons defined optogenetically by type and wiring , 2010, Nature.

[52]  R. Ivry The representation of temporal information in perception and motor control , 1996, Current Opinion in Neurobiology.

[53]  Y. Kajita,et al.  Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. , 2004, Journal of neurosurgery.

[54]  J. Degos,et al.  Improvement of severe postural cerebellar tremor in multiple sclerosis by chronic thalamic stimulation , 1996, Movement disorders : official journal of the Movement Disorder Society.

[55]  M. Hallett,et al.  Levodopa in the treatment of Parkinson's disease: Current controversies , 2004, Movement disorders : official journal of the Movement Disorder Society.

[56]  I. Grofová,et al.  Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat , 1989, The Journal of comparative neurology.

[57]  J. Sanchez-Ramos,et al.  Visual hallucinations associated with Parkinson disease. , 1996, Archives of neurology.

[58]  A M Graybiel,et al.  Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Murtaza Z Mogri,et al.  Targeting and Readout Strategies for Fast Optical Neural Control In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[60]  N. Matsukawa,et al.  Subthalamic nucleus stimulation for Parkinson disease with severe medication-induced hallucinations or delusions. , 2011, Journal of neurosurgery.

[61]  V. Visser-Vandewalle,et al.  Long-term effects of bilateral subthalamic nucleus stimulation in advanced Parkinson disease: a four year follow-up study. , 2005, Parkinsonism & related disorders.

[62]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[63]  H. Steinbusch,et al.  Protection of nigral cell death by bilateral subthalamic nucleus stimulation , 2006, Brain Research.

[64]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[65]  V. Brown,et al.  On the relationships between the striatum and the pedunculopontine tegmental nucleus. , 1997, Critical reviews in neurobiology.

[66]  Anatol C. Kreitzer,et al.  Optogenetic identification of striatal projection neuron subtypes during in vivo recordings , 2013, Brain Research.

[67]  Karl Deisseroth,et al.  Improved expression of halorhodopsin for light-induced silencing of neuronal activity , 2008, Brain cell biology.

[68]  Lederer.,et al.  Observations on Ruptured Ectopic Pregnancy , 1907 .

[69]  S. Rivkees,et al.  Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia , 1995, Brain Research.

[70]  J. Jankovic,et al.  Therapies in Parkinson's disease. , 2012, Current opinion in neurology.

[71]  B. Wainer,et al.  Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies , 1992, The Journal of comparative neurology.

[72]  S. Johnson,et al.  Presynaptic inhibition of synaptic transmission by adenosine in rat subthalamic nucleus in vitro , 2003, Neuroscience.

[73]  Jonathan O. Dostrovsky,et al.  Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia? , 2009, Experimental Neurology.

[74]  Roberts Bartholow,et al.  Art. I.—Experimental Investigations into the Functions of the Human Brain. , 1874 .

[75]  B. Galna,et al.  Cholinergic dysfunction contributes to gait disturbance in early Parkinson's disease. , 2012, Brain : a journal of neurology.

[76]  David Garcia-Garcia,et al.  Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson's disease. , 2011, Brain : a journal of neurology.

[77]  K. Deisseroth,et al.  Neural substrates of awakening probed with optogenetic control of hypocretin neurons , 2007, Nature.

[78]  E. Montgomery The epistemology of Deep Brain Stimulation and neuronal pathophysiology , 2012, Front. Integr. Neurosci..

[79]  Clement Hamani,et al.  Unilateral pedunculopontine stimulation improves falls in Parkinson's disease. , 2010, Brain : a journal of neurology.

[80]  G. Feng,et al.  Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function , 2011, Nature Methods.

[81]  J D Speelman,et al.  Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[82]  A. Benabid,et al.  Is deep brain stimulation neuroprotective if applied early in the course of PD? , 2008, Nature Clinical Practice Neurology.

[83]  K. Deisseroth,et al.  Ultrafast optogenetic control , 2010, Nature Neuroscience.

[84]  J. Stein,et al.  The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia , 1999, Experimental Brain Research.

[85]  Paolo Mazzone,et al.  The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery , 2011, Journal of Neural Transmission.

[86]  Attila Losonczy,et al.  Multi‐array silicon probes with integrated optical fibers: light‐assisted perturbation and recording of local neural circuits in the behaving animal , 2010, The European journal of neuroscience.

[87]  Alessandro Stefani,et al.  Subthalamic stimulation activates internal pallidus: Evidence from cGMP microdialysis in PD patients , 2005, Annals of neurology.

[88]  Beyond “Poke & Hope”: The next steps for DBS for psychiatric disorders , 2009, Clinical Neurophysiology.

[89]  G. S. Russo,et al.  Subthalamic Nucleus Stimulation Modulates Thalamic Neuronal Activity , 2008, The Journal of Neuroscience.

[90]  A. Benabid,et al.  Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. , 2003, The New England journal of medicine.

[91]  L. Wojtecki,et al.  Deep Brain Stimulation for Movement Disorders – A History of Success and Challenges to Conquer , 2012, Front. Integr. Neurosci..

[92]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[93]  Michael J. Jutras,et al.  Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. , 2007, Journal of neurophysiology.

[94]  T. Oertner,et al.  Optical induction of synaptic plasticity using a light-sensitive channel , 2007, Nature Methods.

[95]  Jia Luo,et al.  Subthalamic GAD Gene Therapy in a Parkinson's Disease Rat Model , 2002, Science.

[96]  Mattias Åström,et al.  Unilateral caudal zona incerta deep brain stimulation for Parkinsonian tremor. , 2012, Parkinsonism & related disorders.

[97]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[98]  M. Delong,et al.  Parkinson's Disease Therapeutics: New Developments and Challenges Since the Introduction of Levodopa , 2012, Neuropsychopharmacology.

[99]  J. Bolam,et al.  Topographical Organization of the Pedunculopontine Nucleus , 2011, Front. Neuroanat..

[100]  A. Parent,et al.  Projection from the deep cerebellar nuclei to the pedunculopontine nucleus in the squirrel monkey , 1992, Brain Research.

[101]  Andreea C. Bostan,et al.  The basal ganglia communicate with the cerebellum , 2010, Proceedings of the National Academy of Sciences.

[102]  Ron Alterman,et al.  Subthalamic deep brain stimulation with a constant-current device in Parkinson's disease: an open-label randomised controlled trial , 2012, The Lancet Neurology.

[103]  K. Deisseroth,et al.  Molecular and Cellular Approaches for Diversifying and Extending Optogenetics , 2010, Cell.

[104]  T. Schallert,et al.  Closing the gap between clinic and cage: Sensori-motor and cognitive behavioural testing regimens in neurotoxin-induced animal models of Parkinson's disease , 2012, Neuroscience & Biobehavioral Reviews.

[105]  Mandy Miller Koop,et al.  Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson's disease , 2006, Experimental Neurology.

[106]  H. Reichmann,et al.  Sleep and non-motor symptoms in Parkinson’s disease , 2013, Journal of Neural Transmission.

[107]  Martin Garwicz,et al.  Authenticity, Depression, and Deep Brain Stimulation , 2011, Front. Integr. Neurosci..

[108]  Miguel A L Nicolelis,et al.  Spinal Cord Stimulation Restores Locomotion in Animal Models of Parkinson's Disease , 2009, Science.

[109]  Erwin B. Montgomery,et al.  Dynamically Coupled, High-Frequency Reentrant, Non-linear Oscillators Embedded in Scale-Free Basal Ganglia-Thalamic-Cortical Networks Mediating Function and Deep Brain Stimulation Effects , 2004 .

[110]  Michael Z. Lin,et al.  Characterization of engineered channelrhodopsin variants with improved properties and kinetics. , 2009, Biophysical journal.

[111]  E. Bézard,et al.  Compensatory effects of glutamatergic inputs to the substantia nigra pars compacta in experimental Parkinsonism , 1997, Neuroscience.

[112]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[113]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[114]  N. Logothetis Bold claims for optogenetics , 2010, Nature.

[115]  Takahiro Takano,et al.  Adenosine is crucial for deep brain stimulation–mediated attenuation of tremor , 2008, Nature Medicine.

[116]  Z. Tian,et al.  Prevention of Neurotoxin Damage of 6-OHDA to Dopaminergic Nigral Neuron by Subthalamic Nucleus Lesions , 2001, Stereotactic and Functional Neurosurgery.

[117]  B Piallat,et al.  Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson's disease. , 2010, Brain : a journal of neurology.

[118]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[119]  Anatol C. Kreitzer,et al.  Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry , 2010, Nature.