Möbius conjugation and convolution formulae
暂无分享,去创建一个
[1] R. Stanley. An Introduction to Hyperplane Arrangements , 2007 .
[2] Christos A. Athanasiadis. Characteristic Polynomials of Subspace Arrangements and Finite Fields , 1996 .
[3] Thomas Zaslavsky,et al. Inside-out polytopes , 2003, math/0309330.
[4] R. Stanley,et al. Combinatorial reciprocity theorems , 1974 .
[5] Convolution-multiplication identities for Tutte polynomials of graphs and matroids , 2010, J. Comb. Theory, Ser. B.
[6] Felix Breuer,et al. Ehrhart theory, modular flow reciprocity, and the Tutte polynomial , 2012 .
[7] William T. Tutte. A Ring in Graph Theory , 1947 .
[8] W. T. Tutte,et al. On dichromatic polynomials , 1967 .
[9] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[10] Victor Reiner,et al. A Convolution Formula for the Tutte Polynomial , 1999, J. Comb. Theory, Ser. B.
[11] Beifang Chen,et al. Comparison on the coefficients of characteristic quasi-polynomials of integral arrangements , 2012, J. Comb. Theory, Ser. A.
[12] Joseph P. S. Kung. A multiplication identity for characteristic polynomials of matroids , 2004, Adv. Appl. Math..
[13] Thomas Zaslavsky,et al. ON THE INTERPRETATION OF WHITNEY NUMBERS THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES, NON-RADON PARTITIONS, AND ORIENTATIONS OF GRAPHS , 1983 .
[14] T. Zaslavsky. Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .
[15] C. Athanasiadis. A Combinatorial Reciprocity Theorem for Hyperplane Arrangements , 2006, Canadian Mathematical Bulletin.
[16] Felix Breuer,et al. Enumerating colorings, tensions and flows in cell complexes , 2012, J. Comb. Theory, Ser. A.