Möbius conjugation and convolution formulae

Abstract Let P be a locally finite poset with the interval space Int ( P ) , and R be a ring with identity. We shall introduce the Mobius conjugation μ ⁎ sending each function f : P → R to an incidence function μ ⁎ ( f ) : Int ( P ) → R such that μ ⁎ ( f g ) = μ ⁎ ( f ) ⁎ μ ⁎ ( g ) . Taking P to be the intersection poset of a hyperplane arrangement A , we shall obtain a convolution identity for the number r ( A ) of regions and the number b ( A ) of relatively bounded regions, and a reciprocity theorem of the characteristic polynomial χ ( A , t ) which gives a combinatorial interpretation of the values | χ ( A , − q ) | for large primes q. Moreover, all known convolution identities on Tutte polynomials of matroids will be direct consequences after specializing the poset P and functions f , g .

[1]  R. Stanley An Introduction to Hyperplane Arrangements , 2007 .

[2]  Christos A. Athanasiadis Characteristic Polynomials of Subspace Arrangements and Finite Fields , 1996 .

[3]  Thomas Zaslavsky,et al.  Inside-out polytopes , 2003, math/0309330.

[4]  R. Stanley,et al.  Combinatorial reciprocity theorems , 1974 .

[5]  Convolution-multiplication identities for Tutte polynomials of graphs and matroids , 2010, J. Comb. Theory, Ser. B.

[6]  Felix Breuer,et al.  Ehrhart theory, modular flow reciprocity, and the Tutte polynomial , 2012 .

[7]  William T. Tutte A Ring in Graph Theory , 1947 .

[8]  W. T. Tutte,et al.  On dichromatic polynomials , 1967 .

[9]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[10]  Victor Reiner,et al.  A Convolution Formula for the Tutte Polynomial , 1999, J. Comb. Theory, Ser. B.

[11]  Beifang Chen,et al.  Comparison on the coefficients of characteristic quasi-polynomials of integral arrangements , 2012, J. Comb. Theory, Ser. A.

[12]  Joseph P. S. Kung A multiplication identity for characteristic polynomials of matroids , 2004, Adv. Appl. Math..

[13]  Thomas Zaslavsky,et al.  ON THE INTERPRETATION OF WHITNEY NUMBERS THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES, NON-RADON PARTITIONS, AND ORIENTATIONS OF GRAPHS , 1983 .

[14]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[15]  C. Athanasiadis A Combinatorial Reciprocity Theorem for Hyperplane Arrangements , 2006, Canadian Mathematical Bulletin.

[16]  Felix Breuer,et al.  Enumerating colorings, tensions and flows in cell complexes , 2012, J. Comb. Theory, Ser. A.