3D Local Features for Direct Pairwise Registration

We present a novel, data driven approach for solving the problem of registration of two point cloud scans. Our approach is direct in the sense that a single pair of corresponding local patches already provides the necessary transformation cue for the global registration. To achieve that, we first endow the state of the art PPF-FoldNet auto-encoder (AE) with a pose-variant sibling, where the discrepancy between the two leads to pose-specific descriptors. Based upon this, we introduce RelativeNet, a relative pose estimation network to assign correspondence-specific orientations to the keypoints, eliminating any local reference frame computations. Finally, we devise a simple yet effective hypothesize-and-verify algorithm to quickly use the predictions and align two point sets. Our extensive quantitative and qualitative experiments suggests that our approach outperforms the state of the art in challenging real datasets of pairwise registration and that augmenting the keypoints with local pose information leads to better generalization and a dramatic speed-up.

[1]  Andreas Wieser,et al.  The Perfect Match: 3D Point Cloud Matching With Smoothed Densities , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Nassir Navab,et al.  Camera Pose Filtering with Local Regression Geodesics on the Riemannian Manifold of Dual Quaternions , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[3]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[4]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[5]  Birdal Tolga,et al.  Online inspection of 3D parts via a locally overlapping camera network , 2016 .

[6]  Michael Greenspan,et al.  Super Generalized 4PCS for 3D Registration , 2015, 2015 International Conference on 3D Vision.

[7]  Andrew W. Fitzgibbon,et al.  Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Jiri Matas,et al.  Locally Optimized RANSAC , 2003, DAGM-Symposium.

[9]  Roberto Toldo,et al.  Global registration of multiple point clouds embedding the Generalized Procrustes Analysis into an ICP framework , 2010 .

[10]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Mohammed Bennamoun,et al.  Performance Evaluation of 3D Local Feature Descriptors , 2014, ACCV.

[12]  Luigi di Stefano,et al.  On the repeatability of the local reference frame for partial shape matching , 2011, 2011 International Conference on Computer Vision.

[13]  Hongdong Li,et al.  The 3D-3D Registration Problem Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[14]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[15]  Michael Felsberg,et al.  Density Adaptive Point Set Registration , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[16]  Gabriel J. Brostow,et al.  CubeNet: Equivariance to 3D Rotation and Translation , 2018, ECCV.

[17]  Slobodan Ilic,et al.  Point Pair Features Based Object Detection and Pose Estimation Revisited , 2015, 2015 International Conference on 3D Vision.

[18]  Sunglok Choi,et al.  Performance Evaluation of RANSAC Family , 2009, BMVC.

[19]  Simon Korman,et al.  Latent RANSAC , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[21]  Slobodan Ilic,et al.  A point sampling algorithm for 3D matching of irregular geometries , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Nassir Navab,et al.  Model globally, match locally: Efficient and robust 3D object recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Daniel Cohen-Or,et al.  4-points congruent sets for robust pairwise surface registration , 2008, ACM Trans. Graph..

[24]  Slobodan Ilic,et al.  PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors , 2018, ECCV.

[25]  Eric Brachmann,et al.  BOP: Benchmark for 6D Object Pose Estimation , 2018, ECCV.

[26]  Andrew Owens,et al.  SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels , 2013, 2013 IEEE International Conference on Computer Vision.

[27]  Zi Jian Yew,et al.  3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration , 2018, ECCV.

[28]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Vladlen Koltun,et al.  Fast Global Registration , 2016, ECCV.

[30]  Vladlen Koltun,et al.  Robust reconstruction of indoor scenes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Federico Tombari,et al.  SHOT: Unique signatures of histograms for surface and texture description , 2014, Comput. Vis. Image Underst..

[32]  Slobodan Ilic,et al.  CAD Priors for Accurate and Flexible Instance Reconstruction , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[33]  Jan-Michael Frahm,et al.  USAC: A Universal Framework for Random Sample Consensus , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Vladlen Koltun,et al.  Colored Point Cloud Registration Revisited , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[35]  Jayakorn Vongkulbhisal,et al.  Inverse Composition Discriminative Optimization for Point Cloud Registration , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[36]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[37]  Vladlen Koltun,et al.  Learning Compact Geometric Features , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[38]  Tat-Jun Chin,et al.  Guaranteed Outlier Removal for Point Cloud Registration with Correspondences , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Niloy J. Mitra,et al.  Super4PCS: Fast Global Pointcloud Registration via Smart Indexing , 2019 .

[40]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[41]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[42]  Chyi-Yeu Lin,et al.  6D pose estimation using an improved method based on point pair features , 2018, 2018 4th International Conference on Control, Automation and Robotics (ICCAR).

[43]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[44]  Vincent Lepetit,et al.  Going Further with Point Pair Features , 2016, ECCV.

[45]  Jiaolong Yang,et al.  Go-ICP: Solving 3D Registration Efficiently and Globally Optimally , 2013, 2013 IEEE International Conference on Computer Vision.

[46]  Higinio González-Jorge,et al.  4-Plane congruent sets for automatic registration of as-is 3D point clouds with 3D BIM models , 2018 .

[47]  Vincent Lepetit,et al.  LIFT: Learned Invariant Feature Transform , 2016, ECCV.

[48]  Dong Tian,et al.  FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[49]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[50]  Slobodan Ilic,et al.  Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC , 2018, NeurIPS.

[51]  Federico Tombari,et al.  3 D Point Capsule Networks Supplementary Material , 2019 .

[52]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[53]  Max Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[54]  Jiri Matas,et al.  Optimal Randomized RANSAC , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[56]  Jan Kautz,et al.  HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration , 2018, ECCV.

[57]  Slobodan Ilic,et al.  PPFNet: Global Context Aware Local Features for Robust 3D Point Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.