A new family of high-order compact upwind difference schemes with good spectral resolution

This paper presents a new family of high-order compact upwind difference schemes. Unknowns included in the proposed schemes are not only the values of the function but also those of its first and higher derivatives. Derivative terms in the schemes appear only on the upwind side of the stencil. One can calculate all the first derivatives exactly as one solves explicit schemes when the boundary conditions of the problem are non-periodic. When the proposed schemes are applied to periodic problems, only periodic bi-diagonal matrix inversions or periodic block-bi-diagonal matrix inversions are required. Resolution optimization is used to enhance the spectral representation of the first derivative, and this produces a scheme with the highest spectral accuracy among all known compact schemes. For non-periodic boundary conditions, boundary schemes constructed in virtue of the assistant scheme make the schemes not only possess stability for any selective length scale on every point in the computational domain but also satisfy the principle of optimal resolution. Also, an improved shock-capturing method is developed. Finally, both the effectiveness of the new hybrid method and the accuracy of the proposed schemes are verified by executing four benchmark test cases.

[1]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[2]  Tapan K. Sengupta,et al.  Symmetrized compact scheme for receptivity study of 2D transitional channel flow , 2006, J. Comput. Phys..

[3]  Waqar Asrar,et al.  An AUSM‐based high‐order compact method for solving Navier‐Stokes equations , 2004 .

[4]  Krishnan Mahesh,et al.  High order finite difference schemes with good spectral resolution , 1997 .

[5]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[6]  Tapan K. Sengupta,et al.  A Comparative Study of Time Advancement Methods for Solving Navier–Stokes Equations , 2004, J. Sci. Comput..

[7]  Jung Yul Yoo,et al.  Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes , 2004 .

[8]  M. A. Tolstykh,et al.  Vorticity-Divergence Semi-Lagrangian Shallow-Water Model of the Sphere Based on Compact Finite Differences , 2002 .

[9]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[10]  Jun Zhang Multigrid Method and Fourth-Order Compact Scheme for 2D Poisson Equation with Unequal Mesh-Size Discretization , 2002 .

[11]  Shlomo Ta'asan,et al.  Finite difference schemes for long-time integration , 1994 .

[12]  A. I. Tolstykh On multioperators principle for constructing arbitrary-order difference schemes , 2003 .

[13]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[14]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[15]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[16]  Tapan K. Sengupta,et al.  Analysis of central and upwind compact schemes , 2003 .

[17]  Ravi Samtaney,et al.  Direct numerical simulation of decaying compressible turbulence and shocklet statistics , 2001 .

[18]  J. S. Shang,et al.  Solving schemes for computational magneto-aerodynamics , 2005 .

[19]  K. S. Ravichandran Higher Order KFVS Algorithms Using Compact Upwind Difference Operators , 1997 .

[20]  M. A. Tolstykh Application of fifth-order compact upwind differencing to moisture transport equation in atmosphere , 1994 .

[21]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[22]  K Oliger,et al.  Shock wave/flat plate boundary layer/injection interactions , 1995 .

[23]  Soogab Lee,et al.  Grid-optimized dispersion-relation-preserving schemes on general geometries for computational aeroacoustics , 2001 .

[24]  C. David Pruett,et al.  Spatial direct numerical simulation of high-speed boundary-layer flows part I: Algorithmic considerations and validation , 1995 .

[25]  X. L. Niu,et al.  A new way for constructing high accuracy shock-capturing generalized compact difference schemes , 2003 .

[26]  E Weinan,et al.  Essentially Compact Schemes for Unsteady Viscous Incompressible Flows , 1996 .

[27]  Tomonori Nihei,et al.  A fast solver of the shallow water equations on a sphere using a combined compact difference scheme , 2003 .

[28]  J. Cole,et al.  Calculation of plane steady transonic flows , 1970 .

[29]  Nikolaus A. Adams,et al.  A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems , 1996 .

[30]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[31]  M. Visbal VERY HIGH-ORDER SPATIALLY IMPLICIT SCHEMES FOR COMPUTATIONAL ACOUSTICS ON CURVILINEAR MESHES , 2001 .

[32]  Xiaolin Zhong,et al.  High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition , 1998 .

[33]  Changhoon Lee,et al.  A new compact spectral scheme for turbulence simulations , 2002 .

[34]  J. S. Shang,et al.  High-Order Compact-Difference Schemes for Time-Dependent Maxwell Equations , 1999 .

[35]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[36]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[37]  Yuxin Ren,et al.  A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws , 2003 .

[38]  Joel H. Ferziger,et al.  A robust high-order compact method for large eddy simulation , 2003 .

[39]  A. I. Tolstykh Centered prescribed-order approximations with structured grids and resulting finite-volume schemes , 2004 .

[40]  D. Jeon,et al.  Compact Finite Difference Method for Calculating Magnetic Field Components of Cyclotrons , 1997 .

[41]  Bernardo Cockburn,et al.  Nonlinearly stable compact schemes for shock calculations , 1994 .

[42]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[43]  Jun Zhang,et al.  High accuracy iterative solution of convection diffusion equation with boundary layers on nonuniform grids , 2001 .

[44]  H. Fasel,et al.  A Compact-Difference Scheme for the Navier—Stokes Equations in Vorticity—Velocity Formulation , 2000 .

[45]  Sergio Pirozzoli,et al.  Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction , 2002 .

[46]  P. Roache Fundamentals of computational fluid dynamics , 1998 .

[47]  A. D. Gosman,et al.  Computer-aided engineering : heat transfer and fluid flow , 1985 .

[48]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[49]  Christophe Eric Corre,et al.  A residual-based compact scheme for the compressible Navier-Stokes equations , 2001 .

[50]  Ming-Chih Lai,et al.  A simple compact fourth-order Poisson solver on polar geometry , 2002 .

[51]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[52]  Kiran Bhaganagar,et al.  Direct Numerical Simulation of Spatial Transition to Turbulence Using Fourth-Order Vertical Velocity Second-Order Vertical Vorticity Formulation , 2002 .

[53]  Tapan K. Sengupta,et al.  Navier-Stokes Solution by New Compact Scheme for Incompressible Flows , 2004, J. Sci. Comput..

[54]  Leon Trilling,et al.  The Interaction of an Oblique Shock Wave with a Laminar Boundary Layer , 1959 .

[55]  Jörn Sesterhenn,et al.  A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes , 2000 .

[56]  Eli Turkel,et al.  Compact Implicit MacCormack-Type Schemes with High Accuracy , 2000 .

[57]  E. Sparrow,et al.  Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area , 1977 .

[58]  Tapan K. Sengupta,et al.  High Accuracy Schemes for DNS and Acoustics , 2006, J. Sci. Comput..

[59]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[60]  Tapan K. Sengupta,et al.  High Accuracy Compact Schemes and Gibbs' Phenomenon , 2004, J. Sci. Comput..

[61]  Miguel R. Visbal,et al.  High-order Compact Schemes for Nonlinear Dispersive Waves , 2006, J. Sci. Comput..

[62]  John A. Ekaterinaris,et al.  Regular Article: Implicit, High-Resolution, Compact Schemes for Gas Dynamics and Aeroacoustics , 1999 .

[63]  J. Stoer Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs , 1985 .