The complexity of generating functions for integer points in polyhedra and beyond

Motivated by the formula for the sum of the geometric series, we consider various classes  of sets S �¼ Zd of integer points for which an a priori �glong�h Laurent series or polynomial m�¸S xm can be written as a �gshort�h rational function f (S; x). Examples include the sets of integer points in rational polyhedra, integer semigroups, and Hilbert bases of rational cones, among others. We discuss applications to efficient counting and optimization and open questions.

[1]  P. McMullen Valuations and Dissections , 1993 .

[2]  Alexander I. Barvinok,et al.  A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[3]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[4]  Jürgen Herzog,et al.  Generators and relations of abelian semigroups and semigroup rings , 1970 .

[5]  Alexander I. Barvinok Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..

[6]  A. Barvinok,et al.  Short rational generating functions for lattice point problems , 2002, math/0211146.

[7]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[8]  W. Fulton Introduction to Toric Varieties. , 1993 .

[9]  László A. Székely,et al.  Generating functions for the Frobenius Problem with 2 and 3 generators , 1986 .

[10]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[11]  Kevin M. Woods Computing the Period of an Ehrhart Quasi-Polynomial , 2005, Electron. J. Comb..

[12]  Frank Sottile,et al.  Irrational proofs for three theorems of Stanley , 2007, Eur. J. Comb..

[13]  P. McMullen A COURSE IN CONVEXITY (Graduate Studies in Mathematics 54) By ALEXANDER BARVINOK: 366 pp., US$59.00, ISBN 0-8218-2968-8 (American Mathematical Society, Providence, RI, 2002) , 2003 .

[14]  Uwe Schöning Complexity of Presburger Arithmetic with Fixed Quantifier Dimension , 1997, Theory Comput. Syst..

[15]  Ravi Kannan Test Sets for Integer Programs, 0_ Sentences , 1990, Polyhedral Combinatorics.

[16]  Hugh Thomas,et al.  Cycles representing the Todd class of a toric variety , 2003 .

[17]  László Lovász,et al.  The Shapes of Polyhedra , 1990, Math. Oper. Res..

[18]  Herbert E. Scarf,et al.  Test sets for integer programs , 1997, Math. Program..

[19]  Jeffrey Shallit,et al.  Sums of divisors, perfect numbers, and factoring , 1984, STOC '84.

[20]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[21]  Maurice Bruynooghe,et al.  Computation and manipulation of enumerators of integer projections of parametric polytopes , 2005 .

[22]  Kevin Woods,et al.  Rational generating functions and lattice point sets. , 2004 .

[23]  Nicole Berline,et al.  Local Euler-Maclaurin formula for polytopes , 2005, math/0507256.

[24]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[25]  Jim Lawrence Rational-function-valued Valuations on Polyhedra , 1990, Discrete and Computational Geometry.

[26]  Ravi Kannan,et al.  Lattice translates of a polytope and the Frobenius problem , 1992, Comb..

[27]  David Shallcross,et al.  Neighbors of the Origin for Four by Three Matrices , 1992, Math. Oper. Res..

[28]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[29]  Graham C. Denham,et al.  Short Generating Functions for some Semigroup Algebras , 2003, Electron. J. Comb..

[30]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[31]  Jesús A. De Loera,et al.  Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..

[32]  Jesús A. De Loera,et al.  Integer Polynomial Optimization in Fixed Dimension , 2006, Math. Oper. Res..

[33]  Askold Khovanskii,et al.  Sums of finite sets, orbits of commutative semigroups, and Hilbert functions , 1995 .

[34]  Jesús A. De Loera,et al.  Counting Integer Flows in Networks , 2003, Found. Comput. Math..

[35]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[36]  M. Skriganov Ergodic theory on SL(n), diophantine approximations and anomalies in the lattice point problem , 1998 .