The complexity of generating functions for integer points in polyhedra and beyond
暂无分享,去创建一个
[1] P. McMullen. Valuations and Dissections , 1993 .
[2] Alexander I. Barvinok,et al. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[3] Mukarram Ahmad,et al. Continued fractions , 2019, Quadratic Number Theory.
[4] Jürgen Herzog,et al. Generators and relations of abelian semigroups and semigroup rings , 1970 .
[5] Alexander I. Barvinok. Computing the Ehrhart quasi-polynomial of a rational simplex , 2006, Math. Comput..
[6] A. Barvinok,et al. Short rational generating functions for lattice point problems , 2002, math/0211146.
[7] M. Brion. Points entiers dans les polyèdres convexes , 1988 .
[8] W. Fulton. Introduction to Toric Varieties. , 1993 .
[9] László A. Székely,et al. Generating functions for the Frobenius Problem with 2 and 3 generators , 1986 .
[10] M. Fischer,et al. SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .
[11] Kevin M. Woods. Computing the Period of an Ehrhart Quasi-Polynomial , 2005, Electron. J. Comb..
[12] Frank Sottile,et al. Irrational proofs for three theorems of Stanley , 2007, Eur. J. Comb..
[13] P. McMullen. A COURSE IN CONVEXITY (Graduate Studies in Mathematics 54) By ALEXANDER BARVINOK: 366 pp., US$59.00, ISBN 0-8218-2968-8 (American Mathematical Society, Providence, RI, 2002) , 2003 .
[14] Uwe Schöning. Complexity of Presburger Arithmetic with Fixed Quantifier Dimension , 1997, Theory Comput. Syst..
[15] Ravi Kannan. Test Sets for Integer Programs, 0_ Sentences , 1990, Polyhedral Combinatorics.
[16] Hugh Thomas,et al. Cycles representing the Todd class of a toric variety , 2003 .
[17] László Lovász,et al. The Shapes of Polyhedra , 1990, Math. Oper. Res..
[18] Herbert E. Scarf,et al. Test sets for integer programs , 1997, Math. Program..
[19] Jeffrey Shallit,et al. Sums of divisors, perfect numbers, and factoring , 1984, STOC '84.
[20] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[21] Maurice Bruynooghe,et al. Computation and manipulation of enumerators of integer projections of parametric polytopes , 2005 .
[22] Kevin Woods,et al. Rational generating functions and lattice point sets. , 2004 .
[23] Nicole Berline,et al. Local Euler-Maclaurin formula for polytopes , 2005, math/0507256.
[24] S. Robins,et al. Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .
[25] Jim Lawrence. Rational-function-valued Valuations on Polyhedra , 1990, Discrete and Computational Geometry.
[26] Ravi Kannan,et al. Lattice translates of a polytope and the Frobenius problem , 1992, Comb..
[27] David Shallcross,et al. Neighbors of the Origin for Four by Three Matrices , 1992, Math. Oper. Res..
[28] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[29] Graham C. Denham,et al. Short Generating Functions for some Semigroup Algebras , 2003, Electron. J. Comb..
[30] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[31] Jesús A. De Loera,et al. Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..
[32] Jesús A. De Loera,et al. Integer Polynomial Optimization in Fixed Dimension , 2006, Math. Oper. Res..
[33] Askold Khovanskii,et al. Sums of finite sets, orbits of commutative semigroups, and Hilbert functions , 1995 .
[34] Jesús A. De Loera,et al. Counting Integer Flows in Networks , 2003, Found. Comput. Math..
[35] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[36] M. Skriganov. Ergodic theory on SL(n), diophantine approximations and anomalies in the lattice point problem , 1998 .