Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications

This brief presents the principle and the first experimental results of the multiple-input bulk-driven (MIBD) MOS transistor (MOST) suitable for extremely low-voltage low-power integrated circuits. The MIBD MOST offers significant reduction in circuit complexity, power consumption and extension of the input common-mode range (ICMR). To confirm the benefits of the MIBD MOST, a differential difference amplifier (DDA) with very simple CMOS topology has been designed and fabricated in a standard n-well 0.18 µm CMOS process from TSMC with total chip area 226 µm × 78 µm. The DDA is supplied with 0.5 V and consumed only 1.23 µW, while the ICMR is rail-to-rail. The measured open-loop dc gain is 62 dB, the gain bandwidth product is 56.4 kHz, and the total harmonic distortion is 0.2% @ 1 kHz for 400 mV peak-to-peak input sine wave.

[1]  Antonio J. López-Martín,et al.  Very Low Voltage MOS Translinear Loops Based on Flipped Voltage Followers , 2004 .

[2]  Montree Kumngern,et al.  1-V Inverting and Non-inverting Loser-Take-All Circuit and Its Applications , 2016, Circuits Syst. Signal Process..

[3]  Fabian Khateb,et al.  0.4-V bulk-driven differential-difference amplifier , 2015, Microelectron. J..

[4]  Costas Psychalinos,et al.  Sub-Volt Fully Balanced Differential Difference Amplifier , 2015, J. Circuits Syst. Comput..

[5]  Fabian Khateb,et al.  Design and implementation of sub 0.5‐V OTAs in 0.18‐μm CMOS , 2018, Int. J. Circuit Theory Appl..

[6]  Fabian Khateb,et al.  A Survey of Non-conventional Techniques for Low-voltage Low-power Analog Circuit Design , 2013 .

[7]  P. Kinget,et al.  0.5-V analog circuit techniques and their application in OTA and filter design , 2005, IEEE Journal of Solid-State Circuits.

[8]  Costas Psychalinos,et al.  Digitally programmable low-voltage highly linear transconductor based on promising CMOS structure of differential difference current conveyor , 2015 .

[9]  Nikhil Raj,et al.  Low‐voltage bulk‐driven self‐biased cascode current mirror with bandwidth enhancement , 2014, Electronics Letters.

[10]  Jaime Ramírez-Angulo,et al.  Power‐efficient analog design based on the class AB super source follower , 2012, Int. J. Circuit Theory Appl..

[11]  George Raikos,et al.  0.8 V bulk-driven operational amplifier , 2010 .

[12]  Montree Kumngern,et al.  Fully differential difference transconductance amplifier using FG-MOS transistors , 2015, 2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS).

[13]  Fabian Khateb,et al.  0.3-V Bulk-Driven Nanopower OTA-C Integrator in 0.18 µm CMOS , 2019, Circuits Syst. Signal Process..

[14]  Costas Psychalinos,et al.  Differential Difference Current Conveyor Using Bulk-Driven Technique for Ultra-Low-Voltage Applications , 2014, Circuits Syst. Signal Process..

[15]  P. K. Chan,et al.  A micropower gate-bulk driven differential difference amplifier with folded telescopic cascode topology for sensor applications , 2010, 2010 53rd IEEE International Midwest Symposium on Circuits and Systems.

[16]  Fabian Khateb,et al.  Bulk-driven adaptively biased OTA in 0.18 μm CMOS , 2015 .

[17]  Costas Psychalinos,et al.  0.5 V bulk-driven analog building blocks , 2012 .

[18]  Jaroslav Koton,et al.  Novel low-voltage ultra-low-power DVCC based on floating-gate folded cascode OTA , 2011, Microelectron. J..

[19]  M. Madhushankara,et al.  Floating Gate Wilson Current Mirror for Low Power Applications , 2011 .

[20]  Montree Kumngern,et al.  Low-voltage fully differential difference transconductance amplifier , 2018, IET Circuits Devices Syst..

[21]  G. Scotti,et al.  Exploiting the Body of MOS Devices for High Performance Analog Design , 2011, IEEE Circuits and Systems Magazine.

[22]  Jaime Ramírez-Angulo,et al.  Micropower high current-drive class AB CMOS current-feedback operational amplifier , 2011, Int. J. Circuit Theory Appl..

[23]  Montree Kumngern,et al.  Comparative study of sub-volt differential difference current conveyors , 2013, Microelectron. J..

[24]  Costas Psychalinos,et al.  1 V Rectifier Based on Bulk-Driven Quasi-Floating-Gate Differential Difference Amplifiers , 2015, Circuits Syst. Signal Process..

[25]  Fabian Khateb,et al.  The experimental results of the bulk-driven quasi-floating-gate MOS transistor , 2015 .

[26]  Fabian Khateb,et al.  Design and Implementation of a 0.3-V Differential Difference Amplifier , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Tomasz Kulej 0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage , 2015, Circuits Syst. Signal Process..

[28]  Maneesha Gupta,et al.  FGMOS based voltage-controlled resistor and its applications , 2010, Microelectron. J..

[29]  Roberto Guerrieri,et al.  Active Electrode IC for EEG and Electrical Impedance Tomography With Continuous Monitoring of Contact Impedance , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[30]  Costas Psychalinos,et al.  Practical Design and Evaluation of Fractional-Order Oscillator Using Differential Voltage Current Conveyors , 2016, Circuits Syst. Signal Process..

[31]  Maneesha Gupta,et al.  Low-voltage FGMOS based analog building blocks , 2011, Microelectron. J..

[32]  Fabian Khateb,et al.  Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low-power analog circuits design , 2014 .

[33]  Costas Psychalinos,et al.  Fractional-order filters based on low-voltage DDCCs , 2016, Microelectron. J..

[34]  Fabian Khateb,et al.  Low-voltage bulk-driven rectifier for biomedical applications , 2013, Microelectron. J..

[35]  W. Guggenbuhl,et al.  A versatile building block: the CMOS differential difference amplifier , 1987 .

[36]  Fabian Khateb,et al.  Automatic tuning circuit for bulk-controlled subthreshold MOS resistors , 2014 .

[37]  Jaime Ramirez-Angulo,et al.  Compact class AB CMOS current mirror , 2008 .