Proteomic profile approach of effect of putrescine depletion over Trichomonas vaginalis
暂无分享,去创建一个
Minerva Camacho-Nuez | M. E. Alvarez-Sánchez | L. Vázquez-Carrillo | M. D. Ponce-Regalado | Jonathan Puente-Rivera | L. Quintas-Granados | Alma Villalobos-Osnaya
[1] M. E. Alvarez-Sánchez,et al. Polyamine Transport and Synthesis in Trichomonas vaginalis: Potential Therapeutic Targets. , 2017, Current pharmaceutical design.
[2] L. Eckmann,et al. Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo. , 2016, International journal of antimicrobial agents.
[3] L. Brieba,et al. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein , 2016, Infection and Immunity.
[4] J. Ravel,et al. Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis? , 2015, Front. Physiol..
[5] F. Sánchez-Jiménez,et al. Polyamine Metabolism Is Sensitive to Glycolysis Inhibition in Human Neuroblastoma Cells* , 2015, The Journal of Biological Chemistry.
[6] M. E. Alvarez-Sánchez,et al. Putrescine-Dependent Re-Localization of TvCP39, a Cysteine Proteinase Involved in Trichomonas vaginalis Cytotoxicity , 2014, PloS one.
[7] Kuo-Yang Huang,et al. Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. , 2014, Biochimica et biophysica acta.
[8] R. Hirt. Trichomonas vaginalis virulence factors: an integrative overview , 2013, Sexually Transmitted Infections.
[9] Bryan A. White,et al. A Multi-Omic Systems-Based Approach Reveals Metabolic Markers of Bacterial Vaginosis and Insight into the Disease , 2013, PloS one.
[10] E. Bechara,et al. 1,4-Diamino-2-butanone, a putrescine analogue, promotes redox imbalance in Trypanosoma cruzi and mammalian cells. , 2012, Archives of biochemistry and biophysics.
[11] M. E. Alvarez-Sánchez,et al. The effects of environmental factors on the virulence of Trichomonas vaginalis. , 2012, Microbes and infection.
[12] A. Ivanov,et al. Biogenic polyamines spermine and spermidine activate RNA polymerase and inhibit RNA helicase of hepatitis C virus , 2012, Biochemistry (Moscow).
[13] M. E. Alvarez-Sánchez,et al. Translation initiation factor eIF-5A, the hypusine-containing protein, is phosphorylated on serine and tyrosine and O-glycosylated in Trichomonas vaginalis. , 2012, Microbial pathogenesis.
[14] M. Shumkov,et al. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. , 2012, Research in microbiology.
[15] D. Dessì,et al. Hydrogenosome-localization of arginine deiminase in Trichomonas vaginalis. , 2011, Molecular and biochemical parasitology.
[16] R. Arroyo,et al. The effect of Zn2+ on prostatic cell cytotoxicity caused by Trichomonas vaginalis , 2011 .
[17] Patricia J. Johnson,et al. Mitochondrion-related organelles in eukaryotic protists. , 2010, Annual review of microbiology.
[18] R. Wierenga,et al. Triosephosphate isomerase: a highly evolved biocatalyst , 2010, Cellular and Molecular Life Sciences.
[19] H. Kampinga,et al. The HSP70 chaperone machinery: J proteins as drivers of functional specificity , 2010, Nature Reviews Molecular Cell Biology.
[20] K. Kashiwagi,et al. Modulation of cellular function by polyamines. , 2010, The international journal of biochemistry & cell biology.
[21] Taku Takahashi,et al. Polyamines: ubiquitous polycations with unique roles in growth and stress responses. , 2010, Annals of botany.
[22] E. Agostinelli,et al. Polyamines: fundamental characters in chemistry and biology , 2010, Amino Acids.
[23] A. Pegg. Mammalian polyamine metabolism and function , 2009, IUBMB life.
[24] Shi-rong Guo,et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. , 2008, Journal of plant physiology.
[25] M. E. Alvarez-Sánchez,et al. Polyamine depletion down-regulates expression of the Trichomonas vaginalis cytotoxic CP65, a 65-kDa cysteine proteinase involved in cellular damage. , 2008, The international journal of biochemistry & cell biology.
[26] Magno Junqueira,et al. Application of two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for proteomic analysis of the sexually transmitted parasite Trichomonas vaginalis. , 2007, Journal of mass spectrometry : JMS.
[27] M. J. Soares,et al. A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis , 2007, Proteomics.
[28] Richard D. Hayes,et al. Draft Genome Sequence of the Sexually Transmitted Pathogen Trichomonas vaginalis , 2007, Science.
[29] M. Benchimol,et al. Trichomonas vaginalis Polyamine Metabolism Is Linked to Host Cell Adherence and Cytotoxicity , 2005, Infection and Immunity.
[30] L. Alhonen,et al. Genetic approaches to the cellular functions of polyamines in mammals. , 2004, European journal of biochemistry.
[31] S. Müller,et al. The Amitochondriate Eukaryote Trichomonas vaginalis Contains a Divergent Thioredoxin-linked Peroxiredoxin Antioxidant System* , 2004, Journal of Biological Chemistry.
[32] M. Benchimol,et al. Pseudocysts in trichomonads--new insights. , 2003, Protist.
[33] D. Horner,et al. Fructose-1,6-bisphosphate aldolases in amitochondriate protists constitute a single protein subfamily with eubacterial relationships. , 2002, Gene.
[34] K. Igarashi,et al. Polyamine depletion induces apoptosis through mitochondria-mediated pathway. , 2002, Experimental cell research.
[35] T. Morsy,et al. A study on Trichomoniasis vaginalis and female infertility. , 2001, Journal of the Egyptian Society of Parasitology.
[36] D. Kramer,et al. Dependence of Trichomonas vaginalis upon polyamine backconversion. , 2000, Microbiology.
[37] M. Viikki. Gynaecological Infections as Risk Determinants of Subsequent Cervical Neoplasia , 2000, Acta oncologica.
[38] Patricia J. Johnson,et al. Inhibition of Polyamine Synthesis Arrests Trichomonad Growth and Induces Destruction of Hydrogenosomes , 1999, Antimicrobial Agents and Chemotherapy.
[39] G. Brugerolle,et al. Molecular cloning of actin genes in Trichomonas vaginalis and phylogeny inferred from actin sequences. , 1997, FEMS microbiology letters.
[40] M. Krohn,et al. Trichomonas vaginalis Associated With Low Birth Weight and Preterm Delivery , 1997, Sexually transmitted diseases.
[41] J. Tachezy,et al. The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. , 1996, Molecular and biochemical parasitology.
[42] N. Yarlett,et al. Parasite polyamine metabolism: targets for chemotherapy. , 1994, Biochemical Society transactions.
[43] J. Marsh,et al. Fructose-bisphosphate aldolases: an evolutionary history. , 1992, Trends in biochemical sciences.
[44] Miklós Müller. Biochemistry of Trichomonas vaginalis , 1990 .
[45] N. Yarlett,et al. Effect of DL-alpha-difluoromethylornithine on polyamine synthesis and interconversion in Trichomonas vaginalis grown in a semi-defined medium. , 1988, Molecular and biochemical parasitology.
[46] G. H. Coombs,et al. Polyamine biosynthesis in trichomonads. , 1986, Molecular and biochemical parasitology.
[47] D. S. Reiner,et al. Inhibition of growth of Giardia lamblia by difluoromethylornithine, a specific inhibitor of polyamine biosynthesis. , 1984, The Journal of protozoology.
[48] B. E. Sanderson,et al. Polyamines in Trichomonas vaginalis. , 1983, Molecular and biochemical parasitology.
[49] D. Linstead,et al. The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. , 1983, Molecular and biochemical parasitology.
[50] E. VASQUEZ FERRO,et al. [Trichomonas vaginalis]. , 1954, La Semana medica.
[51] W. Mccullagh. Trichomoniasis , 1937 .