Asymptotic Behavior of Likelihood Methods for Exponential Families when the Number of Parameters Tends to Infinity
暂无分享,去创建一个
[1] Michel Loève,et al. Probability Theory I , 1977 .
[2] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[3] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[4] Carl N. Morris,et al. CENTRAL LIMIT THEOREMS FOR MULTINOMIAL SUMS , 1975 .
[5] V. Yohai,et al. ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS FOR THE LINEAR MODEL , 1979 .
[6] K. Koehler,et al. An Empirical Investigation of Goodness-of-Fit Statistics for Sparse Multinomials , 1980 .
[7] J. Ringland. Robust Multiple Comparisons , 1983 .
[8] S. Portnoy. Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .
[9] S. Portnoy. Asymptotic behavior of M-estimators of p regression parameters when p , 1985 .
[10] Stephen Portnoy,et al. Asymptotic Behavior of the Empiric Distribution of M-Estimated Residuals from a Regression Model with Many Parameters , 1986 .
[11] S. Portnoy. On the central limit theorem in Rp when p→∞ , 1986 .
[12] Stephen Portnoy,et al. A central limit theorem applicable to robust regression estimators , 1987 .