Optimal dietary protein level for pacu Piaractus mesopotamicus juveniles reared in biofloc system

[1]  M. Dawood,et al.  Various carbon/nitrogen ratios in a biofloc-based rearing system of common carp (Cyprinus carpio) fingerlings: Effect on growth performance, immune response, and serum biochemistry , 2022 .

[2]  M. Emerenciano,et al.  Culture of pacu Piaractus mesopotamicus in biofloc technology (BFT): insights on dietary protein sparing and stomach content , 2021, Aquaculture International.

[3]  P. Furtado,et al.  Growth, nutritional efficiency, and profitability of juvenile GIFT strain of Nile tilapia (Oreochromis niloticus) reared in biofloc system on graded feeding rates , 2021 .

[4]  P. Barbosa,et al.  Comparative study of growth, feed efficiency, and hematological profile of Nile tilapia fingerlings in biofloc technology and recirculating aquaculture system , 2021, Tropical Animal Health and Production.

[5]  Mohamed M. Hassan,et al.  The Effect of Stocking Density and Carbon Sources on the Oxidative Status, and Nonspecific Immunity of Nile tilapia (Oreochromis niloticus) Reared under Biofloc Conditions , 2021, Animals : an open access journal from MDPI.

[6]  K. Khan,et al.  Assessment of the ideal ratios of digestible essential amino acids for pacu, Piaractus mesopotamicus , juveniles by the amino acid deletion method , 2020 .

[7]  K. Khan,et al.  Response of juvenile pacu ( Piaractus mesopotamicus Holmberg, 1887) to balanced digestible protein , 2020, Aquaculture Research.

[8]  A. Sinha,et al.  Assessing the feasibility of biofloc technology to largemouth bass Micropterus salmoides juveniles: Insights into their welfare and physiology , 2020 .

[9]  Pollyanna M F Ferreira,et al.  Dietary protein reduction for Nile tilapia fingerlings reared in biofloc technology , 2020, Journal of the World Aquaculture Society.

[10]  M. Sharifinia,et al.  Biofloc technology as a promising tool to improve aquaculture production , 2020 .

[11]  Trinh Thi Lan,et al.  Comparative evaluation of Brewer's yeast as a replacement for fishmeal in diets for tilapia (Oreochromis niloticus), reared in clear water or biofloc environments , 2018, Aquaculture.

[12]  Marcos A da Silva,et al.  Crude protein levels in diets for two growth stages of Nile tilapia (Oreochromis niloticus ) in a biofloc system , 2018, Aquaculture Research.

[13]  F. Pilarski,et al.  South American fish for continental aquaculture , 2018 .

[14]  A. N. Maria,et al.  Effects of live feed containing Panagrellus redivivus and water depth on growth of Betta splendens larvae , 2018, Aquaculture Research.

[15]  Shao-an Liao,et al.  The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs , 2016 .

[16]  Hamilton Hisano,et al.  Corn gluten meal in pacu Piaractus mesopotamicus diets: effects on growth, haematology, and meat quality , 2016, Aquaculture International.

[17]  Fan Wu,et al.  Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus) , 2015 .

[18]  M. McCue,et al.  Starvation physiology: reviewing the different strategies animals use to survive a common challenge. , 2010, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[19]  Á. J. Bicudo,et al.  Growth performance and body composition of pacu Piaractus mesopotamicus (Holmberg 1887) in response to dietary protein and energy levels , 2010 .

[20]  Á. J. Bicudo,et al.  Growth and haematology of pacu, Piaractus mesopotamicus, fed diets with varying protein to energy ratio , 2009 .

[21]  Y. Avnimelech,et al.  Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing , 2009 .

[22]  W. Wasielesky,et al.  Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei , 2006 .

[23]  J. Bechara,et al.  The effect of dietary protein level on pond water quality and feed utilization efficiency of pacúPiaractus mesopotamicus (Holmberg, 1887) , 2005 .

[24]  Dalton José Carneiro,et al.  Métodos de coleta de fezes e determinação dos coeficientes de digestibilidade da fração protéica e da energia de alimentos para o pacu, Piaractus mesopotamicus (Holmberg, 1887) , 2004 .

[25]  Marcos Tavares Dias,et al.  Características hematológicas, bioquímicas e biométricas de Piaractus mesopotamicus Holmberg, 1887 (Osteichthyes: Characidae) oriundos de cultivo intensivo - DOI: 10.4025/actascibiolsci.v26i2.1647 , 2004 .

[26]  D. Brune,et al.  Effect of Nile tilapia, Oreochromis niloticus (L.), size on phytoplankton filtration rate , 2003 .

[27]  M. Tavares-Dias,et al.  Alterações hematológicas e histopatológicas em pacu, Piaractus mesopotamicus Holmberg, 1887 (Osteichthyes, Characidae), , 2002 .

[28]  C. Parsons,et al.  Ideal ratio (relative to lysine) of tryptophan, threonine, isoleucine, and valine for chicks during the second and third weeks posthatch. , 2002, Poultry science.

[29]  Y. Avnimelech Carbon/nitrogen ratio as a control element in aquaculture systems , 1999 .

[30]  M. Petrere River fisheries in Brazil: A review , 1989 .

[31]  N. Merola Effects of three dietary protein levels on the growth of pacu, Colossoma mitrei Berg, in cages , 1988 .

[32]  C. Lorenzen,et al.  DETERMINATION OF CHLOROPHYLL AND PHEO‐PIGMENTS: SPECTROPHOTOMETRIC EQUATIONS1 , 1967 .

[33]  A. El‐Sayed Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade , 2020 .

[34]  H. Volkoff,et al.  Appetite regulating factors in pacu (Piaractus mesopotamicus): Tissue distribution and effects of food quantity and quality on gene expression. , 2017, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[35]  W. Johnstone,et al.  FEEDING REDUCTION STRATEGIES AND ALTERNATIVE FEEDS TO REDUCE PRODUCTION COSTS OF TILAPIA CULTURE Sustainable Feed Technology/Experiment/07SFT02NC , 2012 .

[36]  D. Bureau,et al.  Modelling growth and body composition in fish nutrition: where have we been and where are we going? , 2010 .