Erdős-Ginzburg-Ziv Constants by Avoiding Three-Term Arithmetic Progressions

The Erd\H{o}s-Ginzburg-Ziv constant $\mathfrak{s}(G)$ is the smallest $s$ such that every sequence of $s$ (not necessarily distinct) elements of $G$ has a zero-sum subsequence of length $\operatorname{exp}(G)$. For a prime $p$, let $r(\mathbb{F}_p^n)$ denote the size of the largest subset of $\mathbb{F}_p^n$ without a three-term arithmetic progression. Although similar methods have been used to study $\mathfrak{s}(G)$ and $r(\mathbb{F}_p^n)$, no direct connection between these quantities has previously been established. We give an upper bound for $\mathfrak{s}(G)$ in terms of $r(\mathbb{F}_p^n)$ for the prime divisors $p$ of $\operatorname{exp}(G)$. For the special case $G=\mathbb{F}_p^n$, we prove $\mathfrak{s}(\mathbb{F}_p^n)\leq 2p\cdot r(\mathbb{F}_p^n)$. Using the upper bounds for $r(\mathbb{F}_p^n)$ of Ellenberg and Gijswijt, this result improves the previously best known upper bounds for $\mathfrak{s}(\mathbb{F}_p^n)$ given by Naslund.

[1]  Joshua A. Grochow,et al.  On cap sets and the group-theoretic approach to matrix multiplication , 2016, ArXiv.

[2]  Weidong Gao On Zero-Sum Subsequences of Restricted Size , 1996 .

[3]  Christian Elsholtz Lower Bounds For Multidimensional Zero Sums , 2004, Comb..

[4]  Noga Alon,et al.  A lattice point problem and additive number theory , 1995, Comb..

[5]  Noga Alon,et al.  On Sunflowers and Matrix Multiplication , 2012, Computational Complexity Conference.

[8]  Ernie Croot,et al.  Progression-free sets in Z_4^n are exponentially small , 2016, 1605.01506.

[9]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Jordan S. Ellenberg,et al.  On large subsets of $F_q^n$ with no three-term arithmetic progression , 2016 .

[11]  Christian Reiher,et al.  On Kemnitz’ conjecture concerning lattice-points in the plane , 2007 .

[12]  Heiko Harborth,et al.  Ein Extremalproblem für Gitterpunkte. , 1973 .

[13]  Alfred Geroldinger,et al.  Non-unique factorizations , 2006 .

[14]  J. Fox,et al.  Popular Progression Differences in Vector Spaces , 2017, International Mathematics Research Notices.

[15]  Weidong Gao,et al.  Zero-sum problems in finite abelian groups: A survey , 2006 .

[16]  Noga Alon,et al.  Zero-sum sets of prescribed size , 1993 .

[17]  Yves Edel,et al.  Zero-sum problems in finite abelian groups and affine caps , 2006 .

[18]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[19]  R. Salem,et al.  On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[20]  N. ALON,et al.  Subset Sums , 1987 .

[22]  Eric Naslund Exponential bounds for the Erdős-Ginzburg-Ziv constant , 2020, J. Comb. Theory, Ser. A.