Effect of salinity, pressure and temperature on the solubility of smithsonite (ZnCO3) and Zn complexation in crustal and upper mantle hydrothermal fluids

[1]  R. Widmer,et al.  High-pressure and high-temperature vibrational properties and anharmonicity of carbonate minerals up to 6 GPa and 500 °C by Raman spectroscopy , 2020, American Mineralogist.

[2]  C. Beavers,et al.  The HXD95: a modified Bassett-type hydrothermal diamond-anvil cell for in situ XRD experiments up to 5 GPa and 1300 K , 2020, Journal of synchrotron radiation.

[3]  Daniel Orban,et al.  Cinema:Bandit: a visualization application for beamline science demonstrated on XFEL shock physics experiments. , 2020, Journal of synchrotron radiation.

[4]  R. Gordon,et al.  Zinc transport in hydrothermal fluids: On the roles of pressure and sulfur vs. chlorine complexing , 2019, American Mineralogist.

[5]  Giannantonio Cibin,et al.  The Spectroscopy Village at Diamond Light Source , 2018, Journal of synchrotron radiation.

[6]  J. Bouchet,et al.  Iron under conditions close to the α − γ − ϵ triple point , 2018 .

[7]  B. Debret,et al.  Zinc isotope evidence for sulfate-rich fluid transfer across subduction zones , 2016, Nature Communications.

[8]  Wei Yang,et al.  Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China , 2016 .

[9]  J. Brugger,et al.  Speciation and thermodynamic properties of zinc in sulfur-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy , 2016 .

[10]  H. Sakuma,et al.  Density and isothermal compressibility of supercritical H2O–NaCl fluid: molecular dynamics study from 673 to 2000 K, 0.2 to 2 GPa, and 0 to 22 wt% NaCl concentrations , 2016 .

[11]  O. Mathon,et al.  The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23 , 2015, Journal of synchrotron radiation.

[12]  C. Ottley,et al.  Highly saline fluids from a subducting slab as the source for fluid-rich diamonds , 2015, Nature.

[13]  V. Prakapenka,et al.  DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration , 2015 .

[14]  J. Brugger,et al.  Zinc complexation in chloride-rich hydrothermal fluids (25-600°C): A thermodynamic model derived from ab initio molecular dynamics , 2015 .

[15]  F. Albarède,et al.  Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments , 2014 .

[16]  J. Hazemann,et al.  Fluids in the Crust. Constraints on the mobilization of Zr in magmatic-hydrothermal processes in subduction zones from in situ fluid-melt partitioning experiments , 2014 .

[17]  I. Daniel,et al.  In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions , 2014 .

[18]  N. Akinfiev,et al.  Zn in hydrothermal systems: Thermodynamic description of hydroxide, chloride, and hydrosulfide complexes , 2014, Geochemistry International.

[19]  Jing Liu,et al.  Compressibility of a natural smithsonite ZnCO3 up to 50 GPa , 2014 .

[20]  A. Williams-Jones,et al.  The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids , 2014 .

[21]  M. Wilke,et al.  Calibration of zircon as a Raman spectroscopic pressure sensor to high temperatures and application to water-silicate melt systems , 2013 .

[22]  J. Hazemann,et al.  Zr complexation in high pressure fluids and silicate melts and implications for the mobilization of HFSE in subduction zones , 2013 .

[23]  F. Albarède,et al.  The origin of Zn isotope fractionation in sulfides , 2011 .

[24]  J. Hazemann,et al.  Structure and stability of cadmium chloride complexes in hydrothermal fluids , 2010 .

[25]  Sakura Pascarelli,et al.  A confocal set-up for micro-XRF and XAFS experiments using diamond-anvil cells. , 2010, Journal of synchrotron radiation.

[26]  G. Shen,et al.  Toward an internally consistent pressure scale , 2007, Proceedings of the National Academy of Sciences.

[27]  J. Brugger,et al.  Deriving formation constants for aqueous metal complexes from XANES spectra: Zn2+ and Fe2+ chloride complexes in hypersaline solutions , 2007 .

[28]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[29]  H. Weingärtner,et al.  Supercritical water as a solvent. , 2005, Angewandte Chemie.

[30]  C. Manning,et al.  The solubility of calcite in water at 6–16 kbar and 500–800 °C , 2003 .

[31]  A. Simionovici,et al.  Dissolution of strontianite at high P-T conditions: An in-situ synchrotron X-ray fluorescence study , 2003 .

[32]  D. Sherman,et al.  Zinc Complexation in Hydrothermal Chloride Brines: Results from ab Initio Molecular Dynamics Calculations , 2003 .

[33]  C. Manning,et al.  Experimental determination of calcite solubility in H2O-NaCl solutions at deep crust/ upper mantle pressures and temperatures: Implications for metasomatic processes in shear zones , 2002 .

[34]  P. Philippot,et al.  Deep fluids in subduction zones , 2001 .

[35]  E. Königsberger,et al.  Solid-Solute Phase Equilibria in Aqueous Solution. XII. Solubility and Thermal Decomposition of Smithsonite , 2000 .

[36]  I. Chou,et al.  HYDROTHERMAL DIAMOND ANVIL CELL FOR XAFS STUDIES OF FIRST-ROW TRANSITION ELEMENTS IN AQUEOUS SOLUTION UP TO SUPERCRITICAL CONDITIONS , 2000 .

[37]  I. Chou,et al.  XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell. , 1999, Journal of synchrotron radiation.

[38]  V. Polyakov On anharmonic and pressure corrections to the equilibrium isotopic constants for minerals , 1998 .

[39]  P. McMillan,et al.  Thermodynamic properties and isotopic fractionation of calcite from vibrational spectroscopy of 18O-substituted calcite , 1996 .

[40]  H. Clever,et al.  The Solubility of Some Sparingly Soluble Salts of Zinc and Cadmium in Water and in Aqueous Electrolyte Solutions , 1992 .

[41]  J. Rehr,et al.  Ab initio curved-wave x-ray-absorption fine structure. , 1991, Physical review. B, Condensed matter.

[42]  J. Fein,et al.  Calcite solubility and speciation in supercritical NaCl-HCl aqueous fluids , 1989 .

[43]  Manfred Wolf,et al.  Solubility of calcite in different electrolytes at temperatures between 10° and 60°C and at CO2 partial pressures of about 1 kPa , 1989 .

[44]  P. Loubeyre,et al.  The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations , 1988 .

[45]  H. Barnes,et al.  Ore solution chemistry; VII, Stabilities of chloride and bisulfide complexes of zinc to 350 degrees C , 1987 .

[46]  J. R. Goldsmith,et al.  The decarbonation and heat capacity of ZnCO3 , 1987 .

[47]  T. Seward,et al.  The stability of chlorozinc(II) complexes in hydrothermal solutions up to 350°C , 1986 .

[48]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[49]  E. Segnit,et al.  The solubility of calcite in aqueous solutions—I The solubility of calcite in water between 75° and 200° at CO2 pressures up to 60 atm , 1962 .

[50]  D. Ritson,et al.  Dielectric Properties of Aqueous Ionic Solutions. Parts I and II , 1948 .