High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform

The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye.

[1]  Stephen A. Boppart,et al.  Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography , 2004, IEEE Transactions on Biomedical Engineering.

[2]  Zhilin Hu,et al.  Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. , 2007, Optics letters.

[3]  A. Duijndam,et al.  Nonuniform fast Fourier transform , 1999 .

[4]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[5]  Kai Wang,et al.  Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system. , 2009, Optics express.

[6]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[7]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[8]  Yves Rolain,et al.  Signal reconstruction for non-equidistant finite length sample sets: a "KIS" approach , 1998, IEEE Trans. Instrum. Meas..

[9]  Daniel X Hammer,et al.  Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array. , 2008, The Review of scientific instruments.

[10]  Isaac N. Bankman,et al.  Handbook of medical imaging , 2000 .

[11]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[12]  Augusto Marques Ferreira da Silva,et al.  Efficient NUFFT-based direct Fourier algorithm for fan beam CT reconstruction , 2004, Medical Imaging: Image Processing.

[13]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[14]  Hsieh Hou,et al.  Cubic splines for image interpolation and digital filtering , 1978 .

[15]  A.,et al.  FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , .

[16]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[17]  C. Dorrer,et al.  Spectral resolution and sampling issues in Fourier-transform spectral interferometry , 2000 .

[18]  L. Greengard,et al.  Short Note: The type 3 nonuniform FFT and its applications , 2005 .

[19]  Alexander M. Bronstein,et al.  Reconstruction in diffraction ultrasound tomography using nonuniform FFT , 2002, IEEE Transactions on Medical Imaging.

[20]  L. Greengard,et al.  The type 3 nonuniform FFT and its applications June - , 2005 .

[21]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[22]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[23]  E. Maeland On the comparison of interpolation methods. , 1988, IEEE transactions on medical imaging.

[24]  Gangjun Liu,et al.  Real-time polarization-sensitive optical coherence tomography data processing with parallel computing. , 2009, Applied optics.

[25]  R. Cox,et al.  Direct reconstruction of non‐Cartesian k‐space data using a nonuniform fast Fourier transform , 2001, Magnetic resonance in medicine.

[26]  Kai Wang,et al.  Time-domain interpolation for Fourier-domain optical coherence tomography. , 2009, Optics letters.