Nonlinear filters: beyond the Kalman filter

Nonlinear filters can provide estimation accuracy that is vastly superior to extended Kalman filters for some important practical applications. We compare several types of nonlinear filters, including: particle filters (PFs), unscented Kalman filters, extended Kalman filters, batch filters and exact recursive filters. The key practical issue in nonlinear filtering is computational complexity, which is often called "the curse of dimensionality". It has been asserted that PFs avoid the curse of dimensionality, but this is generally incorrect. Well-designed PFs with good proposal densities sometimes avoid the curse of dimensionality, but not otherwise. Future research in nonlinear filtering will exploit recent progress in quasi-Monte Carlo algorithms (rather than boring old Monte Carlo methods), as well as ideas borrowed from physics (e.g., dimensional interpolation) and new mesh-free adjoint methods for solving PDEs. This tutorial was written for normal engineers, who do not have nonlinear filters for breakfast.

[1]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[2]  R. Mehra A comparison of several nonlinear filters for reentry vehicle tracking , 1971 .

[3]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[4]  Harold W. Sorenson,et al.  On the development of practical nonlinear filters , 1974, Inf. Sci..

[5]  Harold W. Sorenson,et al.  Parameter estimation: Principles and problems , 1980 .

[6]  V. Benes Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .

[7]  Michiel Hazewinkel,et al.  Preface : Stochastic systems : the mathematics of filtering and identification and applications , 1981 .

[8]  Donald Leskiw,et al.  Nonlinear Estimation with Radar Observations , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[9]  T. Hida Stochastic systems: The mathematics of filtering and identification and applications , 1983 .

[10]  R. Fitzgerald,et al.  Decoupled Kalman filters for phased array radar tracking , 1983 .

[11]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[12]  H. W. Sorenson,et al.  Kalman filtering : theory and application , 1985 .

[13]  Frederick E. Daum New Nonlinear Filters and Exact Solutions of the Fokker-Planck Equation , 1986, 1986 American Control Conference.

[14]  Frederick E. Daum,et al.  Solution of the Zakai Equation by Separation of Variables , 1987, 1987 American Control Conference.

[15]  G. Stewart,et al.  Theory of the Combination of Observations Least Subject to Errors , 1987 .

[16]  G. C. Schmidt Designing nonlinear filters based on Daum's theory , 1993 .

[17]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[18]  D. Herschbach,et al.  Dimensional Scaling in Chemical Physics , 1993 .

[19]  Hisashi Tanizaki,et al.  Nonlinear filters , 1993 .

[20]  Fred Daum New exact nonlinear filters: theory and applications , 1994, Defense, Security, and Sensing.

[21]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[22]  Fred Daum Practical nonlinear filtering with the method of virtual measurements , 1997, Optics & Photonics.

[23]  Bernard Hanzon,et al.  Approximate nonlinear filtering by projection on exponential manifolds of densities , 1999 .

[24]  Subhash Challa,et al.  Nonlinear filter design using Fokker-Planck-Kolmogorov probability density evolutions , 2000, IEEE Trans. Aerosp. Electron. Syst..

[25]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[26]  K. Ito Gaussian filter for nonlinear filtering problems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[27]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[28]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[29]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[30]  Multiple-model nonlinear filtering for low-signal ground target applications , 2001, SPIE Defense + Commercial Sensing.

[31]  Stanton Musick,et al.  Comparison of Particle Method and Finite Difference Nonlinear Filters for Low SNR Target Tracking , 2001 .

[32]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[33]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[34]  S. Godsill,et al.  Special issue on Monte Carlo methods for statistical signal processing , 2002 .

[35]  Torsten Söderström,et al.  Anticipative grid design in point-mass approach to nonlinear state estimation , 2002, IEEE Trans. Autom. Control..

[36]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[37]  Endre Süli,et al.  Acta Numerica 2002: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002 .

[38]  Mira Antonietta,et al.  Variance reduction in MCMC , 2003 .

[39]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[40]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[41]  Jim Huang,et al.  Nonlinear filtering with quasi-Monte Carlo methods , 2003, SPIE Optics + Photonics.

[42]  Nigel J. Newton,et al.  Information Flow and Entropy Production in the Kalman-Bucy Filter ∗ , 2004 .

[43]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[44]  Fred Daum,et al.  Physics-based computational complexity of nonlinear filters , 2004, SPIE Defense + Commercial Sensing.

[45]  Aubrey B. Poore,et al.  Batch maximum likelihood (ML) and maximum a posteriori (MAP) estimation with process noise for tracking applications , 2003, SPIE Optics + Photonics.

[46]  Nigel J. Newton,et al.  Information and Entropy Flow in the Kalman–Bucy Filter , 2005 .

[47]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.