Parallel Numerical Tensor Methods for High-Dimensional PDEs

High-dimensional partial-differential equations (PDEs) arise in a number of fields of science and engineering, where they are used to describe the evolution of joint probability functions. Their examples include the Boltzmann and Fokker-Planck equations. We develop new parallel algorithms to solve high-dimensional PDEs. The algorithms are based on canonical and hierarchical numerical tensor methods combined with alternating least squares and hierarchical singular value decomposition. Both implicit and explicit integration schemes are presented and discussed. We demonstrate the accuracy and efficiency of the proposed new algorithms in computing the numerical solution to both an advection equation in six variables plus time and a linearized version of the Boltzmann equation.

[1]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[2]  Z. Alterman,et al.  SOLUTION OF THE BOLTZMANN-HILBERT INTEGRAL EQUATION II. THE COEFFICIENTS OF VISCOSITY AND HEAT CONDUCTION. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[3]  W. E. Stewart,et al.  Solution of the equations of change by Galerkin's method , 1964 .

[4]  J. Ferziger,et al.  Model Dependence of the Slip Coefficient , 1967 .

[5]  B. Zinn,et al.  Application of the Galerkin method in the solution of combustion-instability problems. , 1970 .

[6]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[7]  T. Nishida Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation , 1978 .

[8]  D. Bailin Field theory , 1979, Nature.

[9]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[10]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[11]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[12]  H. Neunzert,et al.  On a simulation scheme for the Boltzmann equation , 1986 .

[13]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[14]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[15]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[16]  F. Rogier,et al.  A direct method for solving the Boltzmann equation , 1994 .

[17]  S. Pope Lagrangian PDF Methods for Turbulent Flows , 1994 .

[18]  A. Peres HIGHER ORDER SCHMIDT DECOMPOSITIONS , 1995, quant-ph/9504006.

[19]  S. Mischler,et al.  About the splitting algorithm for Boltzmann and B , 1996 .

[20]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[21]  C. Cercignani,et al.  Many-Particle Dynamics And Kinetic Equations , 1997 .

[22]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  M F Shlesinger,et al.  Stochastically excited nonlinear ocean structures , 1998 .

[24]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[25]  L. Mieussens Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries , 2000 .

[26]  B. Perthame,et al.  The Gaussian-BGK model of Boltzmann equation with small Prandtl number , 2000 .

[27]  Some comments on modeling the linearized Boltzmann equation , 2002 .

[28]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[29]  James C. Bezdek,et al.  Convergence of Alternating Optimization , 2003, Neural Parallel Sci. Comput..

[30]  H. Struchtrup Macroscopic transport equations for rarefied gas flows , 2005 .

[31]  W. Wagner,et al.  Stochastic Numerics for the Boltzmann Equation , 2005 .

[32]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[33]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[34]  S. Ansumali Mean-Field Model Beyond Boltzmann-Enskog Picture for Dense Gases , 2008, 0806.4479.

[35]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[36]  D. Koch,et al.  An efficient direct simulation Monte Carlo method for low Mach number noncontinuum gas flows based on the Bhatnagar–Gross–Krook model , 2009 .

[37]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[38]  Jianbing Chen,et al.  Stochastic Dynamics of Structures , 2009 .

[39]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[40]  Martin J. Mohlenkamp,et al.  Multivariate Regression and Machine Learning with Sums of Separable Functions , 2009, SIAM J. Sci. Comput..

[41]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[42]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[43]  Daniel M. Dunlavy,et al.  A scalable optimization approach for fitting canonical tensor decompositions , 2011 .

[44]  D. Venturi A fully symmetric nonlinear biorthogonal decomposition theory for random fields , 2011 .

[45]  A. Máté First order partial differential equations ∗ , 2011 .

[46]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[47]  G. Karniadakis,et al.  A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  Paul W. Terry,et al.  Analysis and compression of six-dimensional gyrokinetic datasets using higher order singular value decomposition , 2011, J. Comput. Phys..

[49]  André Uschmajew,et al.  Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..

[50]  Wolfgang Hackbusch,et al.  A regularized Newton method for the efficient approximation of tensors represented in the canonical tensor format , 2012, Numerische Mathematik.

[51]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[52]  Andrzej Cichocki,et al.  Accelerated Canonical Polyadic Decomposition Using Mode Reduction , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[53]  G. Iaccarino,et al.  Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.

[54]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[55]  J. Sader,et al.  High frequency oscillatory flows in a slightly rarefied gas according to the Boltzmann–BGK equation , 2013, Journal of Fluid Mechanics.

[56]  He Huang,et al.  A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Tomographic Problems: A Case Study in Seismic Tomography , 2013, ICCS.

[57]  André Uschmajew,et al.  On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format , 2013, SIAM J. Numer. Anal..

[58]  Andrzej Cichocki,et al.  CANDECOMP/PARAFAC Decomposition of High-Order Tensors Through Tensor Reshaping , 2012, IEEE Transactions on Signal Processing.

[59]  Felix J. Herrmann,et al.  Optimization on the Hierarchical Tucker manifold – Applications to tensor completion , 2014, Linear Algebra and its Applications.

[60]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[61]  Eugene E. Tyrtyshnikov,et al.  Low-rank approximation in the numerical modeling of the Farley-Buneman instability in ionospheric plasma , 2013, J. Comput. Phys..

[62]  Nicolas G. Hadjiconstantinou,et al.  MONTE CARLO METHODS FOR SOLVING THE BOLTZMANN TRANSPORT EQUATION , 2014 .

[63]  Raf Vandebril,et al.  On Generic Nonexistence of the Schmidt-Eckart-Young Decomposition for Complex Tensors , 2014, SIAM J. Matrix Anal. Appl..

[64]  Daniel Kressner,et al.  Algorithm 941 , 2014 .

[65]  P. Gremaud,et al.  Method of Distributions for Uncertainty Quantification , 2015 .

[66]  Katharina Kormann,et al.  A Semi-Lagrangian Vlasov Solver in Tensor Train Format , 2014, SIAM J. Sci. Comput..

[67]  Gabriel Wittum,et al.  Parallel tensor sampling in the hierarchical Tucker format , 2015, Comput. Vis. Sci..

[68]  W. Hackbusch,et al.  On the Convergence of Alternating Least Squares Optimisation in Tensor Format Representations , 2015, 1506.00062.

[69]  Marcel Abendroth,et al.  Quantum Field Theory And Critical Phenomena , 2016 .

[70]  Simon Etter,et al.  Parallel ALS Algorithm for Solving Linear Systems in the Hierarchical Tucker Representation , 2016, SIAM J. Sci. Comput..

[71]  Reinhold Schneider,et al.  Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.

[72]  D. Venturi The Numerical Approximation of Nonlinear Functionals and Functional Differential Equations , 2016, 1604.05250.

[73]  Daniele Venturi,et al.  Numerical methods for high-dimensional probability density function equations , 2016, J. Comput. Phys..

[74]  Gregory Beylkin,et al.  Randomized Alternating Least Squares for Canonical Tensor Decompositions: Application to A PDE With Random Data , 2015, SIAM J. Sci. Comput..

[75]  Lars Karlsson,et al.  Parallel algorithms for tensor completion in the CP format , 2016, Parallel Comput..

[76]  Benjamin J. Raphael,et al.  Network propagation: a universal amplifier of genetic associations , 2017, Nature Reviews Genetics.

[77]  Bora Uçar,et al.  Parallel Candecomp/Parafac Decomposition of Sparse Tensors Using Dimension Trees , 2018, SIAM J. Sci. Comput..

[78]  G. Karniadakis,et al.  Numerical Methods for Stochastic Partial Differential Equations with White Noise , 2018 .

[79]  Raphaël Loubère,et al.  An efficient numerical method for solving the Boltzmann equation in multidimensions , 2016, J. Comput. Phys..

[80]  Anthony Nouy,et al.  Higher-order principal component analysis for the approximation of tensors in tree-based low-rank formats , 2017, Numerische Mathematik.