Epitaxial film growth and optoelectrical properties of layered semiconductors, LaMnXO (X=P, As, and Sb)

Thin films of LaMnXO (X=P, As, and Sb), which are isostructural compounds of the newly discovered superconductor, LaFeAsO, were grown epitaxially on MgO (001) substrates at ∼680 °C by pulsed laser deposition. Postdeposition thermal annealing at 1000 °C in evacuated silica glass ampoules improved the crystallinity and orientation for the LaMnPO and LaMnAsO films, but it led to the phase segregation of the LaMnSbO film. Thermopower and optical absorption measurements revealed that all the films are p-type semiconductors with indirect bandgaps from 1.0 to 1.4 eV, which are supported by density functional calculations with the GGA+U approximation.

[1]  T. Kamiya,et al.  Low and small resistance hole-injection barrier for NPB realized by wide-gap p-type degenerate semiconductor, LaCuOSe:Mg , 2008 .

[2]  P. Adamson,et al.  Structures, physical properties, and chemistry of layered oxychalcogenides and oxypnictides. , 2008, Inorganic chemistry.

[3]  S. Y. Li,et al.  Anomalous transport properties and phase diagram of the FeAs-based SmFeAsO1-xFx superconductors. , 2008, Physical review letters.

[4]  T. Kamiya,et al.  Heteroepitaxial growth and optoelectronic properties of layered iron oxyarsenide, LaFeAsO , 2008, 0808.1956.

[5]  T. Kamiya,et al.  Superconductivity in Epitaxial Thin Films of Co-Doped SrFe2As2 with Bilayered FeAs Structures and their Magnetic Anisotropy , 2008, 0808.1985.

[6]  L. Schultz,et al.  Growth and anisotropy of La(O, F)FeAs thin films deposited by pulsed laser deposition , 2008, 0808.1864.

[7]  R. Glaum,et al.  ZrCuSiAs-type Phosphide Oxides: TbRuPO, DyRuPO, the Series LnOsPO (Ln = La, Ce, Pr, Nd, Sm), and ThAgPO , 2008 .

[8]  T. Kamiya,et al.  Heteroepitaxial growth of layered semiconductors, LaZnOPn (Pn = P and As) , 2008 .

[9]  P. Newhouse,et al.  Chalcogen-based transparent conductors , 2008 .

[10]  Zhang Lichun,et al.  Canonical Entropy and Phase Transition of Rotating Black Hole , 2008 .

[11]  Cheol-hee Park,et al.  Electrical and optical properties of epitaxial transparent conductive BaCuTeF thin films deposited by pulsed laser deposition , 2008 .

[12]  T. Kamiya,et al.  Itinerant ferromagnetism in the layered crystals LaCoOX(X=P,As) , 2008, 0806.0123.

[13]  T. Kamiya,et al.  Nickel-based layered superconductor, LaNiOAs , 2008, 0805.4340.

[14]  H. Hosono,et al.  Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs , 2008, Nature.

[15]  Y. Takahashi,et al.  Electrical and magnetic properties of LnOZnPn (Ln = rare earths; Pn = P, As, Sb) , 2008 .

[16]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[17]  T. Kamiya,et al.  Apparent bipolarity and Seebeck sign inversion in a layered semiconductor : LaZnOP , 2007 .

[18]  T. Kamiya,et al.  Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP. , 2007, Inorganic chemistry.

[19]  Y. Kuroiwa,et al.  Charge density distribution of transparent p-type semiconductor (LaO)CuS , 2007 .

[20]  Y. Takahashi,et al.  Magnetic Properties of LnOZnSb (Ln = La, Ce, Pr) , 2006 .

[21]  H. Hosono,et al.  Valence band structure of BaCuSF and BaCuSeF , 2006 .

[22]  T. Kamiya,et al.  Magnetic and carrier transport properties of Mn-doped p-type semiconductor LaCuOSe: An investigation of the origin of ferromagnetism , 2006 .

[23]  T. Nilges,et al.  Dimorphic CeZnPO and PrZnPO , 2006 .

[24]  T. Kamiya,et al.  Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.

[25]  Hideo Hosono,et al.  Wide-gap layered oxychalcogenide semiconductors: Materials, electronic structures and optoelectronic properties , 2006 .

[26]  H. Ohta,et al.  Excitonic blue luminescence from p-LaCuOSe∕n-InGaZn5O8 light-emitting diode at room temperature , 2005 .

[27]  H. Hosono,et al.  Valence-band structures of layered oxychalcogenides, LaCuOCh (Ch=S, Se, and Te), studied by ultraviolet photoemission spectroscopy and energy-band calculations , 2005 .

[28]  T. Kamiya,et al.  Creation of new functions in transparent oxides utilizing nanostructures embedded in crystal and artificially encoded by laser pulses , 2005 .

[29]  H. Hosono,et al.  Energy band structure of LaCuOCh (Ch = S, Se and Te) calculated by the full-potential linearized augmented plane-wave method , 2004 .

[30]  H. Ohta,et al.  Fabrication of heteroepitaxial thin films of layered oxychalcogenides LnCuOCh (Ln = La–Nd; Ch = S–Te) by reactive solid-phase epitaxy , 2004 .

[31]  T. Kamiya,et al.  Title Single-atomic-layered quantum wells built in wide-gap semiconductors LnCuOCh (Ln=lanthanide, Ch=chalcogen) , 2004 .

[32]  H. Ohta,et al.  Mechanism for Heteroepitaxial Growth of Transparent P-Type Semiconductor: LaCuOS by Reactive Solid-Phase Epitaxy , 2004 .

[33]  H. Ohta,et al.  Third-order optical nonlinearity originating from room-temperature exciton in layered compounds LaCuOS and LaCuOSe , 2004 .

[34]  Hideo Hosono,et al.  Single‐Crystalline Films of the Homologous Series InGaO3(ZnO)m Grown by Reactive Solid‐Phase Epitaxy , 2003 .

[35]  H. Ohta,et al.  Heteroepitaxial growth of a wide-gap p-type semiconductor, LaCuOS , 2002 .

[36]  H. Hosono,et al.  Electronic structure of the transparent p -type semiconductor (LaO)CuS , 2001 .

[37]  H. Hosono,et al.  Room-temperature excitons in wide-gap layered-oxysulfide semiconductor: LaCuOS , 2001 .

[38]  H. Hosono,et al.  Transparent p-type semiconductor: LaCuOS layered oxysulfide , 2000 .

[39]  W. Jeitschko,et al.  Quaternary rare earth transition metal arsenide oxides RTAsO (T=Fe, Ru, Co) with ZrCuSiAs type structure , 2000 .

[40]  V. Dolgikh,et al.  New Mixed Rare-Earth Copper Oxochalcogenides with a LaOAgS-Type Structure. , 1999 .

[41]  L. Akselrud,et al.  New Layered Phases of the MOCuX (M: Ln, Bi; X: S, Se, Te) Family: A Geometric Approach to the Explanation of Phase Stability. , 1999 .

[42]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[43]  W. Jeitschko,et al.  Equiatomic Quaternary Rare Earth Element Zinc Pnictide Oxides RZnPO and RZnAsO. , 1998, Inorganic chemistry.

[44]  W. Jeitschko,et al.  Quaternary Equiatomic Compounds LnZnSbO (Ln = La - Nd, Sm) with ZrCuSiAs-Type Structure , 1997 .

[45]  W. Jeitschko,et al.  Quaternary Equiatomic Manganese Pnictide Oxides AMnPO (A = La-Nd, Sm, Gd-Dy), AMnAsO (A = Y, La-Nd, Sm, Gd-Dy, U), and AMnSbO (A = La-Nd, Sm, Gd) with ZrCuSiAs Type Structure , 1997 .

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  M. Reehuis,et al.  The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure , 1995 .

[48]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[49]  C. Dong,et al.  Synthesis and crystal structure of new rare-earth copper oxyselenides: RCuSeO (R=La, Sm, Gd and Y) , 1994 .