Escherichia coli can survive stress by noisy growth modulation

[1]  J. Wade,et al.  Spurious transcription and its impact on cell function , 2018, Transcription.

[2]  Sahand Hormoz,et al.  Molecular Time Sharing through Dynamic Pulsing in Single Cells , 2018, Cell systems.

[3]  M. Sørensen,et al.  Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells , 2017, mBio.

[4]  T. Bollenbach,et al.  Noisy Response to Antibiotic Stress Predicts Subsequent Single-Cell Survival in an Acidic Environment. , 2017, Cell systems.

[5]  Matthias Heinemann,et al.  Molecular Systems Biology Peer Review Process File Bacterial Persistence Is an Active Σ S Stress Response to Metabolic Flux Limitation Transaction Report , 2022 .

[6]  Burak Okumus,et al.  Mechanical slowing-down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells , 2016, Nature Communications.

[7]  Martin Ackermann,et al.  Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments , 2016, Nature Microbiology.

[8]  Jatin Narula,et al.  Slowdown of growth controls cellular differentiation , 2016, Molecular systems biology.

[9]  T. Wood,et al.  Persistence Increases in the Absence of the Alarmone Guanosine Tetraphosphate by Reducing Cell Growth , 2016, Scientific Reports.

[10]  Yu Tanouchi,et al.  A noisy linear map underlies oscillations in cell size and gene expression in bacteria , 2015, Nature.

[11]  John T. Sauls,et al.  Cell-Size Control and Homeostasis in Bacteria , 2015, Current Biology.

[12]  D. J. Kiviet,et al.  Stochasticity of metabolism and growth at the single-cell level , 2014, Nature.

[13]  Stefan Klumpp,et al.  A Model for Sigma Factor Competition in Bacterial Cells , 2014, PLoS Comput. Biol..

[14]  Viola Vogel,et al.  Bistable Expression of Virulence Genes in Salmonella Leads to the Formation of an Antibiotic-Tolerant Subpopulation , 2014, PLoS biology.

[15]  A. Simons,et al.  Experimental evolution of bet hedging under manipulated environmental uncertainty in Neurospora crassa , 2014, Proceedings of the Royal Society B: Biological Sciences.

[16]  Jan Kok,et al.  Bet-hedging during bacterial diauxic shift , 2014, Proceedings of the National Academy of Sciences.

[17]  B. Palsson,et al.  Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states , 2014, BMC Biology.

[18]  Eshel Ben-Jacob,et al.  Growth feedback as a basis for persister bistability , 2013, Proceedings of the National Academy of Sciences.

[19]  K. Gerdes,et al.  RETRACTED: (p)ppGpp Controls Bacterial Persistence by Stochastic Induction of Toxin-Antitoxin Activity , 2013, Cell.

[20]  Stanislas Leibler,et al.  Dynamic Persistence of Antibiotic-Stressed Mycobacteria , 2013, Science.

[21]  Sasha F. Levy,et al.  Bet Hedging in Yeast by Heterogeneous, Age-Correlated Expression of a Stress Protectant , 2012, PLoS biology.

[22]  Eric Mjolsness,et al.  Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy , 2011, Nature Protocols.

[23]  James C. W. Locke,et al.  Stochastic Pulse Regulation in Bacterial Stress Response , 2011, Science.

[24]  N. Majdalani,et al.  The RpoS-mediated general stress response in Escherichia coli. , 2011, Annual review of microbiology.

[25]  N. Philippe,et al.  ppGpp is the major source of growth rate control in E. coli. , 2011, Environmental microbiology.

[26]  T. Conway,et al.  Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the ‘feast to famine’ gradient in Escherichia coli , 2011, Molecular microbiology.

[27]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[28]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[29]  Andrew Wright,et al.  Robust Growth of Escherichia coli , 2010, Current Biology.

[30]  Elizabeth A. Calle,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[31]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[32]  L. You,et al.  Emergent bistability by a growth-modulating positive feedback circuit. , 2009, Nature chemical biology.

[33]  T. Hwa,et al.  Growth-rate-dependent partitioning of RNA polymerases in bacteria , 2008, Proceedings of the National Academy of Sciences.

[34]  Jerome T. Mettetal,et al.  Stochastic switching as a survival strategy in fluctuating environments , 2008, Nature Genetics.

[35]  H. Schellhorn,et al.  Control of RpoS in global gene expression of Escherichia coli in minimal media , 2008, Molecular Genetics and Genomics.

[36]  S. Gottesman,et al.  ppGpp regulation of RpoS degradation via anti-adaptor protein IraP , 2007, Proceedings of the National Academy of Sciences.

[37]  D. L. Venable Bet hedging in a guild of desert annuals. , 2007, Ecology.

[38]  A. Arkin,et al.  From Fluctuations to Phenotypes: The Physiology of Noise , 2006, Science's STKE.

[39]  Nir Friedman,et al.  Linking stochastic dynamics to population distribution: an analytical framework of gene expression. , 2006, Physical review letters.

[40]  U. Alon,et al.  A comprehensive library of fluorescent transcriptional reporters for Escherichia coli , 2006, Nature Methods.

[41]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[42]  J Hasty,et al.  Cellular growth and division in the Gillespie algorithm. , 2004, Systems biology.

[43]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[44]  M. Thattai,et al.  Stochastic Gene Expression in Fluctuating Environments , 2004, Genetics.

[45]  K. Niklas,et al.  Springer-Verlag 2004 , 2004 .

[46]  H. Schellhorn,et al.  Controlled induction of the RpoS regulon in Escherichia coli, using an RpoS-expressing plasmid. , 2003, Canadian journal of microbiology.

[47]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[48]  R. Hengge-aronis,et al.  Stationary phase gene regulation: what makes an Escherichia coli promoter sigmaS-selective? , 2002, Current opinion in microbiology.

[49]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[50]  J. Imlay,et al.  Alkyl Hydroperoxide Reductase Is the Primary Scavenger of Endogenous Hydrogen Peroxide in Escherichia coli , 2001, Journal of bacteriology.

[51]  N. Fujita,et al.  Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase. , 2000, Nucleic acids research.

[52]  Akira Ishihama,et al.  Transcriptional Organization and In Vivo Role of theEscherichia coli rsd Gene, Encoding the Regulator of RNA Polymerase Sigma D , 1999, Journal of bacteriology.

[53]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[54]  T. Nyström,et al.  Negative regulation by RpoS: a case of sigma factor competition , 1998, Molecular microbiology.

[55]  A. Ishihama,et al.  A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Hengge-aronis,et al.  The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. , 1994, Genes & development.

[57]  A. Ishihama,et al.  Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Akira Ishihama,et al.  Heterogeneity of the principal sigma factor in Escherichia coli: the rpoS gene product, sigma 38, is a second principal sigma factor of RNA polymerase in stationary-phase Escherichia coli. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[59]  N. Henneberg,et al.  Osmotic regulation of rpoS-dependent genes in Escherichia coli , 1993, Journal of bacteriology.

[60]  H. Xiao,et al.  Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. , 1991, The Journal of biological chemistry.

[61]  R. Hengge-aronis,et al.  Identification of a central regulator of stationary‐phase gene expression in Escherichia coli , 1991, Molecular microbiology.

[62]  G. Schreiber,et al.  Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli. , 1989, The Journal of biological chemistry.

[63]  H. Schellhorn,et al.  Transcriptional regulation of katE in Escherichia coli K-12 , 1988, Journal of bacteriology.

[64]  P. Loewen,et al.  Catalases HPI and HPII in Escherichia coli are induced independently. , 1985, Archives of biochemistry and biophysics.

[65]  William W. Ward,et al.  SPECTROPHOTOMETRIC IDENTITY OF THE ENERGY TRANSFER CHROMOPHORES IN RENILLA AND AEQUOREA GREEN‐FLUORESCENT PROTEINS , 1980 .

[66]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[67]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[68]  J. Bigger TREATMENT OF STAPHYLOCOCCAL INFECTIONS WITH PENICILLIN BY INTERMITTENT STERILISATION , 1944 .