Linguistic quantifiers modeled by Sugeno integrals

[1]  Witold Pedrycz,et al.  Granular Computing - The Emerging Paradigm , 2007 .

[2]  Janusz Kacprzyk,et al.  Inductive Learning From Incomplete and Imprecise Examples , 1990, IPMU.

[3]  Bernadette Bouchon-Meunier,et al.  Approximate reasoning with linguistic modifiers , 1998, Int. J. Intell. Syst..

[4]  Joseph Y. Halpern Reasoning about uncertainty , 2003 .

[5]  P. Bosc,et al.  Fuzzy integrals and database flexible querying , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[6]  A. Knoll,et al.  A formal theory of fuzzy natural language quantification and its role in granular computing , 2001 .

[7]  S. Weber ⊥-Decomposable measures and integrals for Archimedean t-conorms ⊥ , 1984 .

[8]  Mingsheng Ying,et al.  A logic for approximate reasoning , 1994, Journal of Symbolic Logic.

[9]  Mingsheng Ying Compactness, the LöWenheim-Skolem Property and the Direct Product of Lattices of Truth Values , 1992, Math. Log. Q..

[10]  심상천 퍼지 Compactness에 관한 고찰 , 1997 .

[11]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[12]  Ronald R. Yager,et al.  General Multiple-Objective Decision Functions and Linguistically Quantified Statements , 1984, Int. J. Man Mach. Stud..

[13]  Mingsheng Ying,et al.  Deduction Theorem for Many-Valued Inference , 1991, Math. Log. Q..

[14]  Rami Zwick,et al.  Measures of similarity among fuzzy concepts: A comparative analysis , 1987, Int. J. Approx. Reason..

[15]  Daniel G. Schwartz,et al.  Dynamic Reasoning with Qualified Syllogisms , 1997, Artif. Intell..

[16]  E. Keenan Some Properties of Natural Language Quantifiers: Generalized Quantifier Theory , 2002 .

[17]  Etienne E. Kerre,et al.  An overview of fuzzy quantifiers. (II). Reasoning and applications , 1998, Fuzzy Sets Syst..

[18]  Etienne E. Kerre,et al.  An overview of fuzzy quantifiers. (I). Interpretations , 1998, Fuzzy Sets Syst..

[19]  S. Barro,et al.  Definition and classification of semi-fuzzy quantifiers for the evaluation of fuzzy quantified sentences , 2003, Int. J. Approx. Reason..

[20]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[21]  Joseph Y. Halpern,et al.  Plausibility measures and default reasoning , 1996, JACM.

[22]  Patrick Bosc,et al.  MONOTONOUS QUANTIFICATIONS AND SUGENO FUZZY INTEGRALS , 1995 .

[23]  Ronald R. Yager,et al.  Interpreting linguistically quantified propositions , 1994, Int. J. Intell. Syst..

[24]  H. Ritter,et al.  A Framework for Evaluating Approaches to Fuzzy Quantification , 1999 .

[25]  Vilém Novák,et al.  First-order fuzzy logic , 1987, Stud Logica.

[26]  Joseph Y. Halpern,et al.  Plausibility Measures: A User's Guide , 1995, UAI.

[27]  D. S. Fernández Adquisición de relaciones entre atributos en bases de datos relacionales , 2000 .

[28]  Miguel Delgado,et al.  Approximate reasoning tools for artificial intelligence , 1990 .

[29]  Jonathan Lawry,et al.  A methodology for computing with words , 2001, Int. J. Approx. Reason..

[30]  P. Bosc,et al.  Monotonic quantified statements and fuzzy integrals , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[31]  M. Ying,et al.  Quantifiers, modifiers and qualifiers in fuzzy logic , 1996, Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium.

[32]  Bernadette Bouchon-Meunier,et al.  Fuzzy Logic And Soft Computing , 1995 .

[33]  Mingsheng Ying,et al.  Perturbation of fuzzy reasoning , 1999, IEEE Trans. Fuzzy Syst..

[34]  Ingo Glöckner DFS - An Axiomatic Approach to Fuzzy Quantification , 1997 .

[35]  Mingsheng Ying The Fundamental Theorem of Ultraproduct in Pavelka's Logic , 1992, Math. Log. Q..

[36]  Henri Prade A two-layer fuzzy pattern matching procedure for the evaluation of conditions involving vague quantifiers , 1990, J. Intell. Robotic Syst..

[37]  D. Dubois,et al.  Fuzzy cardinality and the modeling of imprecise quantification , 1985 .

[38]  Senén Barro,et al.  A framework for fuzzy quantification models analysis , 2003, IEEE Trans. Fuzzy Syst..

[39]  Mingsheng Ying,et al.  Implication operators in fuzzy logic , 2002, IEEE Trans. Fuzzy Syst..

[40]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[41]  L. Zadeh A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[42]  Daniel Sánchez,et al.  Fuzzy cardinality based evaluation of quantified sentences , 2000, Int. J. Approx. Reason..

[43]  Janusz Kacprzyk,et al.  "Softer" optimization and control models via fuzzy linguistic quantifiers , 1984, Inf. Sci..

[44]  Ronald R. Yager,et al.  Quantified Propositions in a Linguistic Logic , 1983, Int. J. Man Mach. Stud..

[45]  Lotfi A. Zadeh,et al.  PRUF—a meaning representation language for natural languages , 1978 .

[46]  G. Choquet Theory of capacities , 1954 .

[47]  A. Mostowski On a generalization of quantifiers , 1957 .

[48]  J. Barwise,et al.  Generalized quantifiers and natural language , 1981 .

[49]  M. Ying On Zadeh's method for interpreting linguistically quantified proposition , 1988, [1988] Proceedings. The Eighteenth International Symposium on Multiple-Valued Logic.

[50]  Janusz Kacprzyk,et al.  Database Queries with Fuzzy Linguistic Quantifiers , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[51]  J. Kacprzyk,et al.  GROUP DECISION MAKING WITH FUZZY MAJORITIES REPRESENTED BY LINGUISTIC QUANTIFIERS , 1993 .

[52]  A. L. PRUF a meaning representation language for natural languages , 2008 .

[53]  Mingsheng Ying,et al.  A formal model of computing with words , 2002, IEEE Trans. Fuzzy Syst..

[54]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[55]  Ingo Glöckner Evaluation of quantified propositions in generalized models of fuzzy quantification , 2004, Int. J. Approx. Reason..

[56]  D. Ralescu Cardinality, quantifiers, and the aggregation of fuzzy criteria , 1995 .

[57]  Johan van Benthem,et al.  Questions About Quantifiers , 1984, J. Symb. Log..

[58]  Jonathan Lawry,et al.  A framework for linguistic modelling , 2004, Artif. Intell..