Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source

Abstract We study global solutions of a class of chemotaxis systems generalizing the prototype { u t = ∇ ⋅ ( ( u + 1 ) m − 1 ∇ u ) − χ ∇ ⋅ ( u ( u + 1 ) q − 1 ∇ v ) + a u − b u r , x ∈ Ω , t > 0 , 0 = Δ v − v + u , x ∈ Ω , t > 0 , in a bounded domain Ω ⊂ R N ( N ≥ 1 ) with smooth boundary, with parameters m ≥ 1 , r > 1 , a ≥ 0 , b , q , χ > 0 . It is shown that when q + 1 max ⁡ { r , m + 2 N } , or b > b 0 : = N [ r − m ] − 2 ( r − m ) N + 2 ( r − 2 ) χ if q + 1 = r , then for any sufficiently smooth initial data there exists a classical solution which is global in time and bounded. The results improve the results of Wang et al. (2014) [37] and Cao and Zheng (2014) [6] .

[1]  Dirk Horstmann,et al.  Blow-up in a chemotaxis model without symmetry assumptions , 2001, European Journal of Applied Mathematics.

[2]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[3]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[4]  Sining Zheng,et al.  Boundedness of solutions to a quasilinear parabolic–elliptic Keller–Segel system with logistic source , 2014 .

[5]  Michael Winkler,et al.  Finite-time blow-up in a quasilinear system of chemotaxis , 2008 .

[6]  Jingxue Yin,et al.  Coexistence periodic solutions of a doubly nonlinear parabolic system with Neumann boundary conditions , 2012 .

[7]  H. Gajewski,et al.  Global Behaviour of a Reaction‐Diffusion System Modelling Chemotaxis , 1998 .

[8]  Michael Winkler,et al.  Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction , 2011 .

[9]  M. Rascle,et al.  Finite time blow-up in some models of chemotaxis , 1995, Journal of mathematical biology.

[10]  Alexander Lorz,et al.  COUPLED CHEMOTAXIS FLUID MODEL , 2010 .

[11]  R. Kowalczyk,et al.  Preventing blow-up in a chemotaxis model , 2005 .

[12]  Youshan Tao,et al.  Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity , 2011, 1106.5345.

[13]  Michael Winkler,et al.  A Chemotaxis System with Logistic Source , 2007 .

[14]  Michael Winkler,et al.  Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system , 2011, 1112.4156.

[15]  Michael Winkler,et al.  How Far Can Chemotactic Cross-diffusion Enforce Exceeding Carrying Capacities? , 2014, J. Nonlinear Sci..

[16]  B. Perthame Transport Equations in Biology , 2006 .

[17]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[18]  K. Painter,et al.  Volume-filling and quorum-sensing in models for chemosensitive movement , 2002 .

[19]  Chunlai Mu,et al.  On a quasilinear parabolic–elliptic chemotaxis system with logistic source , 2014 .

[20]  Nicholas D. Alikakos,et al.  An application of the invariance principle to reaction-diffusion equations , 1979 .

[21]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[22]  Michael Winkler,et al.  Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect , 2010 .

[23]  M. A. Herrero,et al.  A blow-up mechanism for a chemotaxis model , 1997 .

[24]  Chunlai Mu,et al.  Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source , 2013 .

[25]  Michael Winkler,et al.  Chemotaxis with logistic source : Very weak global solutions and their boundedness properties , 2008 .

[26]  J. M. Urbano The Method of Intrinsic Scaling: A Systematic Approach to Regularity for Degenerate and Singular PDEs , 2008 .

[27]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[28]  Christian Stinner,et al.  Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions , 2011, 1112.6202.

[29]  Alexander Lorz,et al.  Global Solutions to the Coupled Chemotaxis-Fluid Equations , 2010 .

[30]  Michael Winkler,et al.  Global Large-Data Solutions in a Chemotaxis-(Navier–)Stokes System Modeling Cellular Swimming in Fluid Drops , 2012 .

[31]  Michael Winkler,et al.  Global Regularity versus Infinite-Time Singularity Formation in a Chemotaxis Model with Volume-Filling Effect and Degenerate Diffusion , 2012, SIAM J. Math. Anal..

[32]  Zhaoyin Xiang,et al.  A Note on Global Existence for the Chemotaxis–Stokes Model with Nonlinear Diffusion , 2014 .

[33]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[34]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[35]  Martin Burger,et al.  The Keller-Segel Model for Chemotaxis with Prevention of Overcrowding: Linear vs. Nonlinear Diffusion , 2006, SIAM J. Math. Anal..

[36]  Michael Winkler,et al.  Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening , 2014 .

[37]  Sachiko Ishida,et al.  Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains , 2014 .

[38]  Tohru Tsujikawa,et al.  Exponential attractor for a chemotaxis-growth system of equations , 2002 .

[39]  Xinru Cao,et al.  Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with logistic source , 2014 .

[40]  Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2 , 2012, 1201.3270.

[41]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[42]  Michael Winkler,et al.  Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source , 2010 .

[43]  Philippe Laurenccot,et al.  Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system , 2008, 0810.3369.

[44]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[45]  O. A. Ladyzhenskai︠a︡,et al.  Linear and Quasi-linear Equations of Parabolic Type , 1995 .