NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES

We report new observations of circumgalactic gas in the halos of early-type galaxies (ETGs) obtained by the COS-Halos Survey with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. We find that detections of H I surrounding ETGs are typically as common and strong as around star-forming galaxies, implying that the total mass of circumgalactic material is comparable in the two populations. For ETGs, the covering fraction for H I absorption above 1016 cm?2 is ~40%-50% within ~150 kpc. Line widths and kinematics of the detected material show it to be cold (T 105 K) in comparison to the virial temperature of the host halos. The implied masses of cool, photoionized circumgalactic medium baryons may be up to 109-1011 M ?. Contrary to some theoretical expectations, strong halo H I absorbers do not disappear as part of the quenching of star formation. Even passive galaxies retain significant reservoirs of halo baryons that could replenish the interstellar gas reservoir and eventually form stars. This halo gas may feed the diffuse and molecular gas that is frequently observed inside ETGs.

[1]  The Gaseous Extent of Galaxies and the Origin of Lyα Absorption Systems. V. Optical and Near-Infrared Photometry of Lyα-absorbing Galaxies at z<1 , 2001, astro-ph/0107137.

[2]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[3]  J. X. Prochaska,et al.  MULTIPHASE GAS IN GALAXY HALOS: THE O vi LYMAN-LIMIT SYSTEM TOWARD J1009+0713 , 2011, 1103.5252.

[4]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[5]  R. Sutherland,et al.  The Source of Ionization along the Magellanic Stream , 2007, 0711.0247.

[6]  M. Putman,et al.  Head–tail clouds: drops to probe the diffuse Galactic halo , 2011, 1110.0013.

[7]  J. Prochaska,et al.  THE GAS−GALAXY CONNECTION AT zabs = 0.35: O vi AND H i ABSORPTION TOWARD J 0943+0531 , 2011, 1105.4601.

[8]  Hsiao-Wen Chen,et al.  A Space Telescope Imaging Spectrograph Survey for O VI Absorption Systems at 0.12 < z ≲ 0.5. II. Physical Conditions of the Ionized Gas , 2008, 0801.2381.

[9]  Timothy A. Davis,et al.  The ATLAS3D project - XIII. Mass and morphology of H I in early-type galaxies as a function of environment , 2011, 1111.4241.

[10]  J. X. Prochaska,et al.  The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.

[11]  G. Knapp,et al.  Molecular gas in elliptical galaxies , 1991 .

[12]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[13]  Carnegie Observatories,et al.  PROBING THE INTERGALACTIC MEDIUM/GALAXY CONNECTION. V. ON THE ORIGIN OF Lyα AND O vi ABSORPTION AT z < 0.2 , 2011, 1103.1891.

[14]  K. Alatalo,et al.  The ATLAS3D project – IV. The molecular gas content of early-type galaxies , 2011, 1102.4633.

[15]  U. N. Dame,et al.  A High-Resolution Survey of Low-Redshift QSO Absorption Lines: Statistics and Physical Conditions of O VI Absorbers , 2007, 0706.1214.

[16]  S. C. Trager,et al.  The Stellar Population Histories of Local Early-Type Galaxies. I. Population Parameters , 2000, astro-ph/0001072.

[17]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[18]  Greg L. Bryan,et al.  GAS STRIPPING IN SIMULATED GALAXIES WITH A MULTIPHASE INTERSTELLAR MEDIUM , 2009, 0901.2115.

[19]  B. Savage,et al.  Observations of Highly Ionized Gas in the Galactic Halo , 1992 .

[20]  K. Schawinski,et al.  Environment and self-regulation in galaxy formation , 2009, 0912.0259.

[21]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[22]  V. Springel,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 9/08/03 BLACK HOLES IN GALAXY MERGERS: THE FORMATION OF RED ELLIPTICAL GALAXIES , 2004 .

[23]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[24]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[25]  The First Observations of Low-redshift Damped Lyα Systems with the Cosmic Origins Spectrograph , 2011, 1102.3927.

[26]  B. Savage,et al.  THE RELATIONSHIP BETWEEN INTERGALACTIC H i/O vi AND NEARBY (z < 0.017) GALAXIES , 2009, 0903.2259.

[27]  Hsiao-Wen Chen,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/12/04 PROBING THE IGM-GALAXY CONNECTION AT Z < 0.5 I: A GALAXY SURVEY IN QSO FIELDS AND A GALAXY-ABSORBER CROSS-CORRELATION STUDY 1,2 , 2022 .

[28]  Kevin France,et al.  The Cosmic Origins Spectrograph , 1998 .

[29]  M. Bureau,et al.  Molecular gas and star formation in early-type galaxies , 2005, 1007.4147.

[30]  S. Kaviraj Recent star formation in local, morphologically disturbed spheroidal galaxies on the optical red sequence , 2010, 1007.4810.

[31]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[32]  J. Prochaska,et al.  THE COS-HALOS SURVEY: KECK LRIS AND MAGELLAN MagE OPTICAL SPECTROSCOPY , 2011, 1108.3852.

[33]  George F. Hartig,et al.  Preliminary Characterization of the Post- Launch Line Spread Function of Cos , 2009 .

[34]  R. Davies,et al.  The ATLAS3D project - X. On the origin of the molecular and ionized gas in early-type galaxies , 2011, 1107.0002.