miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients

[1]  R. Greenspan,et al.  Neurogenetics , 2019, Journal of the Neurological Sciences.

[2]  Q. Dong,et al.  miR‐338‐3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a , 2013, FEBS letters.

[3]  X. Chen,et al.  A Combination of Let-7d, Let-7g and Let-7i Serves as a Stable Reference for Normalization of Serum microRNAs , 2013, PloS one.

[4]  P. Nelson,et al.  Circulating microRNAs in Alzheimer’s disease: the search for novel biomarkers , 2013, Front. Mol. Neurosci..

[5]  V. Meininger,et al.  Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. , 2013, Brain : a journal of neurology.

[6]  A. Ludolph,et al.  Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis , 2013, Acta neuropathologica communications.

[7]  David S. Greenberg,et al.  Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes , 2013, Front. Mol. Neurosci..

[8]  C. Angelini,et al.  Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis , 2013, Neurobiology of Disease.

[9]  Harald Hampel,et al.  Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[10]  B. De Felice,et al.  A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. , 2012, Gene.

[11]  J. Hodges,et al.  Grey and White Matter Changes across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia Continuum , 2012, PloS one.

[12]  J. Glennon,et al.  A Potential Regulatory Role for Intronic microRNA-338-3p for Its Host Gene Encoding Apoptosis-Associated Tyrosine Kinase , 2012, PloS one.

[13]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[14]  D. Geschwind,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[15]  W. Xiong,et al.  Grade-specific expression profiles of miRNAs/mRNAs and docking study in human grade I-III astrocytomas. , 2011, Omics : a journal of integrative biology.

[16]  R. Gold,et al.  Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. , 2011, Blood.

[17]  Murray J. Cairns,et al.  Upregulation of Dicer and MicroRNA Expression in the Dorsolateral Prefrontal Cortex Brodmann Area 46 in Schizophrenia , 2011, Biological Psychiatry.

[18]  C. Kang,et al.  MiRNA-451 plays a role as tumor suppressor in human glioma cells , 2010, Brain Research.

[19]  A. Aschrafi,et al.  Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. , 2010, RNA.

[20]  G. Magro,et al.  MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis , 2010, Journal of Molecular Medicine.

[21]  Igor M. Dozmorov,et al.  Identification of Unique MicroRNA Signature Associated with Lupus Nephritis , 2010, PloS one.

[22]  Kai Stühler,et al.  Identification and Functional Characterization of microRNAs Involved in the Malignant Progression of Gliomas , 2010, Brain pathology.

[23]  D. Cleveland,et al.  TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. , 2010, Human molecular genetics.

[24]  A. Aschrafi,et al.  Regulation of axonal trafficking of cytochrome c oxidase IV mRNA , 2010, Molecular and Cellular Neuroscience.

[25]  Q. Lu,et al.  MicroRNA-Mediated Control of Oligodendrocyte Differentiation , 2010, Neuron.

[26]  T. Tuschl,et al.  Absolute quantification of microRNAs by using a universal reference. , 2009, RNA.

[27]  Walter J. Lukiw,et al.  Micro-RNA abundance and stability in human brain: Specific alterations in Alzheimer's disease temporal lobe neocortex , 2009, Neuroscience Letters.

[28]  S. Kauppinen,et al.  microRNAs in CNS Disorders , 2009, NeuroMolecular Medicine.

[29]  M. Wood,et al.  Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. , 2009, Human molecular genetics.

[30]  B. Strooper,et al.  Alterations of the microRNA network cause neurodegenerative disease , 2009, Trends in Neurosciences.

[31]  K. Fischbeck,et al.  Mitochondrial abnormalities in spinal and bulbar muscular atrophy , 2008, Human molecular genetics.

[32]  Guiliang Tang,et al.  The Expression of MicroRNA miR-107 Decreases Early in Alzheimer's Disease and May Accelerate Disease Progression through Regulation of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 , 2008, The Journal of Neuroscience.

[33]  P. Nelson,et al.  MicroRNAs (miRNAs) in Neurodegenerative Diseases , 2008, Brain pathology.

[34]  C. Wahlestedt,et al.  Noncoding RNAs: couplers of analog and digital information in nervous system function? , 2007, Trends in Neurosciences.

[35]  Hyman M. Schipper,et al.  Transcriptional profiling of Alzheimer blood mononuclear cells by microarray , 2007, Neurobiology of Aging.

[36]  Stephen T Warren,et al.  Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. , 2007, Human molecular genetics.

[37]  P. Greengard,et al.  Cerebellar neurodegeneration in the absence of microRNAs , 2007, The Journal of experimental medicine.

[38]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[39]  Michael W Pfaffl,et al.  RNA integrity and the effect on the real-time qRT-PCR performance. , 2006, Molecular aspects of medicine.

[40]  R V Jensen,et al.  Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Pasko Rakic,et al.  Microarray analysis of microRNA expression in the developing mammalian brain , 2004, Genome Biology.

[42]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[43]  M. Matsunaga,et al.  Expression of metabotropic glutamate receptor mRNAs in the human spinal cord: implications for selective vulnerability of spinal motor neurons in amyotrophic lateral sclerosis , 2001, Journal of the Neurological Sciences.

[44]  M. Yuzaki,et al.  Characterization of the apoptosis-associated tyrosine kinase (AATYK) expressed in the CNS , 2001, Oncogene.

[45]  O. Hornykiewicz,et al.  Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord. , 1991, Journal of neurology, neurosurgery, and psychiatry.

[46]  Peter T Nelson,et al.  A study of small RNAs from cerebral neocortex of pathology-verified Alzheimer's disease, dementia with lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls. , 2013, Journal of Alzheimer's disease : JAD.