Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters

Deformable beamsplitters have been shown as a means of creating a wide field of view, varifocal, optical see- through, augmented reality display. Current systems suffer from degraded optical quality at far focus and are tethered to large air compressors or pneumatic devices which prevent small, self-contained systems. We present an analysis on the shape of the curved beamsplitter as it deforms to different focal depths. Our design also demonstrates a step forward in reducing the form factor of the overall system.

[1]  A Duane,et al.  Studies in Monocular and Binocular Accommodation, with Their Clinical Application. , 1922, Transactions of the American Ophthalmological Society.

[2]  E F FINCHAM,et al.  The reciprocal actions of accommodation and convergence , 1957, The Journal of physiology.

[3]  F. W. Weymouth Visual sensory units and the minimal angle of resolution. , 1958, American journal of ophthalmology.

[4]  G Westheimer,et al.  The Maxwellian view. , 1966, Vision research.

[5]  Eric G. Rawson,et al.  Vibrating varifocal mirrors for 3-D imaging , 1969 .

[6]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Alexei A. Goon,et al.  Multifocal planes head-mounted displays. , 2000, Applied optics.

[8]  Takahisa Ando,et al.  Retinal projection display using holographic optical element , 2000, Electronic Imaging.

[9]  Peter D. Burns,et al.  Slanted-Edge MTF for Digital Camera and Scanner Analysis , 2000, PICS.

[10]  Robert L. Byer,et al.  Deformable mirror development at Stanford University , 2002, Optics + Photonics.

[11]  Thomas A. Furness,et al.  A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror , 2003 .

[12]  P. Lukowicz,et al.  Defocusing simulations on a retinal scanning display for quasi accommodation-free viewing. , 2003, Optics express.

[13]  Gerhard Tröster,et al.  LCD-based coherent wearable projection display for quasi-accommodation-free imaging , 2003 .

[14]  Brian T. Schowengerdt,et al.  Binocular retinal scanning laser display with integrated focus cues for ocular accommodation , 2003, IS&T/SPIE Electronic Imaging.

[15]  Neil A. Dodgson,et al.  Variation and extrema of human interpupillary distance , 2004, IS&T/SPIE Electronic Imaging.

[16]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, SIGGRAPH 2004.

[17]  Clifton M. Schor,et al.  A pulse-step model of accommodation dynamics in the aging eye , 2005 .

[18]  Gerhard Tröster,et al.  Oscillating fluid lens in coherent retinal projection displays for extending depth of focus , 2005 .

[19]  J. Rolland,et al.  Head-worn displays: a review , 2006, Journal of Display Technology.

[20]  Brian T. Schowengerdt,et al.  True 3-D scanned voxel displays using single or multiple light sources , 2006 .

[21]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[22]  A. Werber,et al.  Tunable Pneumatic Microoptics , 2008, Journal of Microelectromechanical Systems.

[23]  Sheng Liu,et al.  An optical see-through head mounted display with addressable focal planes , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[24]  Mtm Marc Lambooij,et al.  Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review , 2009 .

[25]  Peter J. Savino,et al.  Comprar Neuro-Ophthalmology. Color Atlas & Synopsis Of Clinical Ophthalmology. Wills Eye Institute + Online Access 2nd Ed. | Peter Savino | 9781609132668 | Lippincott Williams & Wilkins , 2012 .

[26]  Akimasa Yuuki,et al.  A new Maxwellian view display for trouble‐free accommodation , 2012 .

[27]  Walter M. Jay Color Atlas and Synopsis of Clinical Ophthalmology. Wills Eye Institute, Neuro-Ophthalmology (Wills Eye Institute Atlas Series), 2nd Edition , 2013 .

[28]  Douglas Lanman,et al.  Near-eye light field displays , 2013, SIGGRAPH Emerging Technologies.

[29]  Douglas Lanman,et al.  Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources , 2014, SIGGRAPH '14.

[30]  Hong Hua,et al.  High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics. , 2014, Optics express.

[31]  James F. O'Brien,et al.  Optimal presentation of imagery with focus cues on multi-plane displays , 2015, ACM Trans. Graph..

[32]  Gordon Wetzstein,et al.  The light field stereoscope , 2015, SIGGRAPH Emerging Technologies.

[33]  Jan Kautz,et al.  Slim near-eye display using pinhole aperture arrays. , 2015, Applied optics.

[34]  Gordon Wetzstein,et al.  Novel Optical Configurations for Virtual Reality: Evaluating User Preference and Performance with Focus-tunable and Monovision Near-eye Displays , 2016, CHI.

[35]  Gregory Kramida,et al.  Resolving the Vergence-Accommodation Conflict in Head-Mounted Displays , 2016, IEEE Transactions on Visualization and Computer Graphics.

[36]  Rahul Narain,et al.  Blur and the perception of depth at occlusions. , 2016, Journal of vision.

[37]  Karol Myszkowski,et al.  Wide Field Of View Varifocal Near-Eye Display Using See-Through Deformable Membrane Mirrors , 2017, IEEE Transactions on Visualization and Computer Graphics.

[38]  Gordon D. Love,et al.  Chromablur , 2017, ACM Trans. Graph..

[39]  Shinichi Uehara,et al.  65‐2: Optical Attachment to Measure Both Eye‐Box/FOV Characteristics for AR/VR Eyewear Displays , 2017 .

[40]  Changwon Jang,et al.  Retinal 3D , 2017, ACM Trans. Graph..

[41]  George Drettakis,et al.  Accommodation and Comfort in Head-Mounted Displays , 2018 .

[42]  Gordon Wetzstein,et al.  Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays , 2017, Proceedings of the National Academy of Sciences.

[43]  Peter Shirley,et al.  Near-eye varifocal augmented reality display using see-through screens , 2017, ACM Trans. Graph..

[44]  Wojciech Matusik,et al.  Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics , 2017, ACM Trans. Graph..

[45]  Douglas Lanman,et al.  Fast gaze-contingent optimal decompositions for multifocal displays , 2017, ACM Trans. Graph..

[46]  Andreas Georgiou,et al.  Holographic near-eye displays for virtual and augmented reality , 2017, ACM Trans. Graph..

[47]  Hong Hua Enabling Focus Cues in Head-Mounted Displays , 2017 .