On the modeling and forecasting of call center arrivals

We review and discuss the key issues in building statistical models for the call arrival process in telephone call centers, and then we survey and compare various types of models proposed so far. These models are used both for simulation and to forecast incoming call volumes to make staffing decisions and build (or update) work schedules for agents who answer those calls. Commercial software and call center managers usually base their decisions solely on point forecasts, given in the form of mathematical expectations (conditional on current information), but distributional forecasts, which come in the form of (conditional) probability distributions, are generally more useful, in particular in the context of simulation. Building realistic models is not simple, because arrival rates are themselves stochastic, time-dependent, dependent across time periods and across call types, and are often affected by external events. As an illustration, we evaluate the forecasting accuracy of selected models in an empirical study with real-life call center data.

[1]  Haipeng Shen Statistical Analysis of Call‐Center Operational Data: Forecasting Call Arrivals, and Analyzing Customer Patience and Agent Service , 2010 .

[2]  J. W. Taylor,et al.  Short-term electricity demand forecasting using double seasonal exponential smoothing , 2003, J. Oper. Res. Soc..

[3]  Shane G. Henderson,et al.  FORECAST ERRORS IN SERVICE SYSTEMS , 2009, Probability in the Engineering and Informational Sciences.

[4]  Refik Soyer,et al.  Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach , 2008, Manag. Sci..

[5]  Shane G. Henderson,et al.  Service system planning in the presence of a random arrival rate , 2004 .

[6]  Avishai Mandelbaum,et al.  Workload forecasting for a call center: Methodology and a case study , 2009, 1009.5741.

[7]  W. Whitt,et al.  Improving Service by Informing Customers About Anticipated Delays , 1999 .

[8]  Tevfik Aktekin,et al.  Call center arrival modeling: A Bayesian state‐space approach , 2011 .

[9]  Ward Whitt,et al.  Dynamic staffing in a telephone call center aiming to immediately answer all calls , 1999, Oper. Res. Lett..

[10]  Haipeng Shen,et al.  Interday Forecasting and Intraday Updating of Call Center Arrivals , 2008, Manuf. Serv. Oper. Manag..

[11]  Itay Gurvich,et al.  Staffing Call Centers with Uncertain Demand Forecasts: A Chance-Constrained Optimization Approach , 2010, Manag. Sci..

[12]  James W. Taylor,et al.  A Comparison of Univariate Time Series Methods for Forecasting Intraday Arrivals at a Call Center , 2008, Manag. Sci..

[13]  Pierre L'Ecuyer Modeling and Optimization Problems in Contact Centers , 2006, Third International Conference on the Quantitative Evaluation of Systems - (QEST'06).

[14]  Ger Koole,et al.  Managing uncertainty in call centres using Poisson mixtures , 2001 .

[15]  Armann Ingolfsson,et al.  The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta , 2007, Health care management science.

[16]  SteckleySamuel g.,et al.  Forecast errors in service systems , 2009 .

[17]  Ben Delaney,et al.  Interfaces , 2002, IEEE Multim..

[18]  Jonathan Weinberg,et al.  Bayesian Forecasting of an Inhomogeneous Poisson Process With Applications to Call Center Data , 2007 .

[19]  Vincent A. Mabert,et al.  Short interval forecasting of emergency phone call (911) work loads , 1985 .

[20]  Vijay Mehrotra,et al.  Intelligent Procedures for Intra‐Day Updating of Call Center Agent Schedules , 2009 .

[21]  Pierre L'Ecuyer,et al.  A Java library for simulating contact centers , 2005, Proceedings of the Winter Simulation Conference, 2005..

[22]  Avishai Mandelbaum,et al.  Designing a Call Center with Impatient Customers , 2002, Manuf. Serv. Oper. Manag..

[23]  Nabil Channouf,et al.  Modélisation et optimisation d'un centre d'appels téléphoniques : étude du processus d'arrivée , 2008 .

[24]  Pierre L'Ecuyer,et al.  Staffing Multiskill Call Centers via Linear Programming and Simulation , 2008, Manag. Sci..

[25]  Avishai Mandelbaum,et al.  Telephone Call Centers: Tutorial, Review, and Research Prospects , 2003, Manuf. Serv. Oper. Manag..

[26]  Avishai Mandelbaum,et al.  Statistical Analysis of a Telephone Call Center , 2005 .

[27]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[28]  Pierre L'Ecuyer,et al.  Modeling Daily Arrivals to a Telephone Call Center , 2003, Manag. Sci..

[29]  Michel Gendreau,et al.  Optimizing daily agent scheduling in a multiskill call center , 2010, Eur. J. Oper. Res..

[30]  Peter R. Winters,et al.  Forecasting Sales by Exponentially Weighted Moving Averages , 1960 .

[31]  Jeffrey E. Jarrett,et al.  Improving forecasting for telemarketing centers by ARIMA modeling with intervention , 1998 .

[32]  A. Barbour,et al.  Poisson Approximation , 1992 .

[33]  Harrison H. Zhou,et al.  The root–unroot algorithm for density estimation as implemented via wavelet block thresholding , 2010 .

[34]  Haipeng Shen,et al.  Analysis of call centre arrival data using singular value decomposition , 2005 .

[35]  Pierre L'Ecuyer,et al.  A normal copula model for the arrival process in a call center , 2012, Int. Trans. Oper. Res..

[36]  B. Brorsen,et al.  Forecasting Hourly Peak Call Volume for a Rural Electric Cooperative Call Center , 2012 .

[37]  Pierre L'Ecuyer,et al.  Modeling and simulation of call centers , 2005, Proceedings of the Winter Simulation Conference, 2005..

[38]  James W. Taylor,et al.  Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing , 2012, Manag. Sci..

[39]  Haipeng Shen,et al.  Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles: Comments , 2010 .

[40]  Pierre L'Ecuyer,et al.  Call-type dependence in multiskill call centers , 2013, Simul..

[41]  W. Whitt,et al.  Choosing arrival process models for service systems: Tests of a nonhomogeneous Poisson process , 2014 .

[42]  Haipeng Shen,et al.  FORECASTING TIME SERIES OF INHOMOGENEOUS POISSON PROCESSES WITH APPLICATION TO CALL CENTER WORKFORCE MANAGEMENT , 2008, 0807.4071.

[43]  George C. Tiao,et al.  ANALYSIS OF TELEPHONE DATA: A CASE STUDY OF FORECASTING SEASONAL TIME SERIES. , 1971 .

[44]  Pierre L'Ecuyer,et al.  Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models , 2012, Manuf. Serv. Oper. Manag..

[45]  Zeynep Akşin,et al.  The Modern Call Center: A Multi‐Disciplinary Perspective on Operations Management Research , 2007 .

[46]  Keith E. Muller,et al.  Linear Model Theory: Univariate, Multivariate, and Mixed Models , 2006 .

[47]  Shane G. Henderson,et al.  Performance measures for service systems with a random arrival rate , 2005, Proceedings of the Winter Simulation Conference, 2005..

[48]  Refik Soyer,et al.  Modeling latent sources in call center arrival data , 2010, Eur. J. Oper. Res..

[49]  Bruce H. Andrews,et al.  L. L. Bean Improves Call-Center Forecasting , 1995 .

[50]  Oryal Tanir,et al.  Call center simulation in Bell Canada , 1999, WSC '99.

[51]  Ward Whitt,et al.  Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes? , 2014, Manuf. Serv. Oper. Manag..

[52]  Rob J Hyndman,et al.  Forecasting with Exponential Smoothing: The State Space Approach , 2008 .

[53]  Sandjai Bhulai,et al.  A Simple Staffing Method for Multiskill Call Centers , 2008, Manuf. Serv. Oper. Manag..