Passive Attitude Control of Flexible Spacecraft from Quaternion Measurements

In this work, we propose a dynamic controller for a spacecraft with flexible appendages and based on attitude measurements. This control ensures the asymptotic fulfillment of the objectives in the case of rest-to-rest maneuvers when a failure occurs on the accelerometer sensors, so that the angular velocity is not available for feedback. Also, it is assumed that the modal variables describing the flexible elements are not measured. This is a lower level controller and is to be selected at the higher level by a supervisor when an emergency situation is detected.

[1]  Panagiotis Tsiotras A passivity approach to attitude stabilization using nonredundant kinematic parameterizations , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[2]  T. Dwyer Exact nonlinear control of large angle rotational maneuvers , 1984 .

[3]  Salvatore Monaco,et al.  A Nonlinear Feedback Control Law for Attitude Control , 1986 .

[4]  S. Gennaro,et al.  Active Vibration Suppression in Flexible Spacecraft Attitude Tracking , 1998 .

[5]  J. Wen,et al.  Attitude control without angular velocity measurement: a passivity approach , 1996, IEEE Trans. Autom. Control..

[6]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[7]  S. Di Gennaro Output feedback stabilization of flexible spacecraft , 1996 .

[8]  G. A. Natanson A deterministic method for estimating attitude from magnetometer data only , 1992 .

[9]  Panagiotis Tsiotras A Passivity Ap roach to Attitude Stabilization Using Nonredun 1 ant Kinematic Parameterieations , 1995 .

[10]  G. A. Natanson,et al.  A PC-based magnetometer-only attitude and rate determination system for gyroless spacecraft , 1995 .

[11]  B. Friedland Analysis Strapdown Navigation Using Quaternions , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[12]  B. P. Ickes,et al.  A new method for performing digital control system attitude computations using quaternions , 1968 .

[13]  John T. Wen,et al.  Attitude control without angular velocity measurement: a passivity approach , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[14]  S. Di Gennaro,et al.  Nonlinear Digital Scheme for Attitude Tracking , 1999 .

[15]  I. Bar-Itzhack,et al.  Satellite Angular Rate Estimation from Vector Measurements , 1996 .

[16]  S. Monaco,et al.  A nonlinear attitude control law for a satellite with flexible appendages , 1985, 1985 24th IEEE Conference on Decision and Control.

[17]  Bong Wie,et al.  Quaternion feedback for spacecraft large angle maneuvers , 1985 .

[18]  A. Isidori Nonlinear Control Systems , 1985 .

[19]  S. Di Gennaro Output attitude control of flexible spacecraft from quaternion measures: a passivity approach , 1998 .

[20]  S. Monaco,et al.  Variable structure control of globally feedback-decoupled deformable vehicle meneuvers , 1987, 26th IEEE Conference on Decision and Control.

[21]  P. W. Likins,et al.  Results of flexible spacecraft attitude control studies utilizing hybrid coordinates , 1971 .

[22]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .