Deformation Theory for Finite Cluster Complexes
暂无分享,去创建一个
[1] Tomoki Nakanishi. Cluster Algebras and Scattering Diagrams, Part III. Cluster Scattering Diagrams , 2021 .
[2] 野村栄一,et al. 2 , 1900, The Hatak Witches.
[3] 한성민,et al. WDR5 promotes the tumorigenesis of oral squamous cell carcinoma via CARM1/β-catenin axis , 2021, Odontology.
[4] M. Artin,et al. Versal deformations and algebraic stacks , 1974 .
[5] R. Stanley. Combinatorics and commutative algebra , 1983 .
[6] Y. Kawamata. Derived Categories in Algebraic Geometry , 2013 .
[7] Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.
[8] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[9] A. Zelevinsky,et al. On tropical dualities in cluster algebras , 2011, 1101.3736.
[10] Daniel Lowengrub,et al. Deformation in Theory , 2014 .
[11] C. Geiss,et al. Generic bases for cluster algebras and the Chamber Ansatz , 2010, 1004.2781.
[12] S. Fomin,et al. Introduction to Cluster Algebras. Chapters 1-3 , 2016, 1608.05735.
[13] C. Geiss,et al. Generic Caldero-Chapoton functions with coefficients and applications to surface cluster algebras , 2020, 2007.05483.
[14] Cluster algebras: Notes for the CDM-03 conference , 2003, math/0311493.
[15] N. Ilten,et al. Hilbert Schemes and Toric Degenerations for Low Degree Fano Threefolds , 2012, 1202.0510.
[16] Tilting theory and cluster combinatorics , 2004, math/0402054.
[17] D. S. Rim. Equivariant $G$-structure on versal deformations , 1980 .
[18] P. Cao,et al. The enough g-pairs property and denominator vectors of cluster algebras , 2018, Mathematische Annalen.
[19] Alma E. Cavazos-Gaither,et al. Experiment , 2018, Encyclopedia of Evolutionary Psychological Science.
[20] Giovanni Cerulli Irelli,et al. Caldero-Chapoton algebras , 2012, 1208.3310.
[21] S. Fomin,et al. Introduction to Cluster Algebras. Chapter 6 , 2020, 2008.09189.
[22] Eleonore Faber,et al. Classification of singularities of cluster algebras of finite type , 2021 .
[23] N. Ilten,et al. Degenerations to unobstructed Fano Stanley–Reisner schemes , 2011, 1102.4521.
[24] B. Keller,et al. On cluster algebras with coefficients and 2-Calabi-Yau categories , 2007, 0710.3152.
[25] O. Iyama,et al. $\tau$-tilting finite algebras, bricks and $g$-vectors , 2015, 1503.00285.
[26] N. Ilten. Versal deformations and local Hilbert schemes , 2011, 1107.2416.
[27] Bernd Sturmfels,et al. Multigraded Hilbert schemes , 2002, math/0201271.
[28] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[29] B. Keller,et al. From triangulated categories to cluster algebras , 2005, math/0506018.
[30] Cluster algebra structures and semicanonical bases for unipotent groups , 2007, math/0703039.
[31] I. Assem. Tilting theory - an introduction , 1990 .
[32] M. André. Homologie des algèbres commutatives , 1974 .
[33] A. B. Buan,et al. Cluster-tilting theory , 2008 .
[34] J. Scott. Grassmannians and Cluster Algebras , 2003, math/0311148.
[35] Fan Qin. Bases for upper cluster algebras and tropical points , 2019, Journal of the European Mathematical Society.
[36] G. Lusztig. Semicanonical Bases Arising From Enveloping Algebras , 2000 .
[37] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[38] J. Weyman,et al. Quivers with potentials and their representations II: Applications to cluster algebras , 2009, 0904.0676.
[39] Alfredo N'ajera Ch'avez. A 2-Calabi–Yau realization of finite-type cluster algebras with universal coefficients , 2015, Mathematische Zeitschrift.
[40] Paul Hacking,et al. Canonical bases for cluster algebras , 2014, 1411.1394.
[41] T. Nakanishi. Synchronicity phenomenon in cluster patterns , 2019, Journal of the London Mathematical Society.
[42] Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.
[43] Jan Stevens,et al. Computing Versal Deformations , 1995, Exp. Math..
[44] R. Harrington. Part II , 2004 .
[45] B. M. Fulk. MATH , 1992 .
[46] Jenna Rajchgot,et al. Lower bound cluster algebras: presentations, Cohen-Macaulayness, and normality , 2015, 1508.02314.
[47] J. Grabowski,et al. Graded cluster algebras , 2013, 1309.6170.
[48] Bernard Leclerc,et al. Cluster algebras , 2014, Proceedings of the National Academy of Sciences.
[49] M. Gross,et al. Birational geometry of cluster algebras , 2013, 1309.2573.
[50] B. Keller. Triangulated Categories: Cluster algebras, quiver representations and triangulated categories , 2008, 0807.1960.
[51] J. Grabowski,et al. Graded Frobenius Cluster Categories , 2016, Documenta Mathematica.
[52] Alfredo N'ajera Ch'avez,et al. Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras , 2020, 2007.14972.
[53] K. Altmann,et al. Deforming Stanley–Reisner schemes , 2009, 0901.2502.
[54] S. Fomin,et al. Y-systems and generalized associahedra , 2001, hep-th/0111053.
[55] Z. Teitler,et al. TORIC VARIETIES , 2010 .
[56] Einzelwerken Muster,et al. Invent , 2021, Encyclopedic Dictionary of Archaeology.
[57] S. Fomin,et al. Cluster algebras II: Finite type classification , 2002, math/0208229.
[58] Nathan Reading,et al. Universal geometric cluster algebras , 2012, 1209.3987.
[59] C. Geiss,et al. Kac–Moody groups and cluster algebras , 2010, 1001.3545.
[60] Laurent Demonet. Categorification of Skew-symmetrizable Cluster Algebras , 2009, 0909.1633.