Deformation Theory for Finite Cluster Complexes

We study the deformation theory of the Stanley-Reisner rings associated to cluster complexes for skew-symmetrizable cluster algebras of geometric and finite cluster type. In particular, we show that in the skewsymmetric case, these cluster complexes are unobstructed, generalizing a result of Ilten and Christophersen in the An case. We also study the connection between cluster algebras with universal coefficients and cluster complexes. We show that for a full rank positively graded cluster algebra A of geometric and finite cluster type, the cluster algebra A with universal coefficients may be recovered as the universal family over a partial closure of a torus orbit in a multigraded Hilbert scheme. Likewise, we show that under suitable hypotheses, the cluster algebra A may be recovered as the coordinate ring for a certain torus-invariant semiuniversal deformation of the Stanley-Reisner ring of the cluster complex. We apply these results to show that for any cluster algebra A of geometric and finite cluster type, A is Gorenstein, and A is unobstructed if it is skewsymmetric. Moreover, if A has enough frozen variables then it has no nontrivial torus-invariant deformations. We also study the Gröbner theory of the ideal of relations among cluster and frozen variables of A. As a byproduct we generalize previous results in this setting obtained by Bossinger, Mohammadi and Nájera Chávez for Grassmannians of planes and Gr(3, 6).

[1]  Tomoki Nakanishi Cluster Algebras and Scattering Diagrams, Part III. Cluster Scattering Diagrams , 2021 .

[2]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[3]  한성민,et al.  WDR5 promotes the tumorigenesis of oral squamous cell carcinoma via CARM1/β-catenin axis , 2021, Odontology.

[4]  M. Artin,et al.  Versal deformations and algebraic stacks , 1974 .

[5]  R. Stanley Combinatorics and commutative algebra , 1983 .

[6]  Y. Kawamata Derived Categories in Algebraic Geometry , 2013 .

[7]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  A. Zelevinsky,et al.  On tropical dualities in cluster algebras , 2011, 1101.3736.

[10]  Daniel Lowengrub,et al.  Deformation in Theory , 2014 .

[11]  C. Geiss,et al.  Generic bases for cluster algebras and the Chamber Ansatz , 2010, 1004.2781.

[12]  S. Fomin,et al.  Introduction to Cluster Algebras. Chapters 1-3 , 2016, 1608.05735.

[13]  C. Geiss,et al.  Generic Caldero-Chapoton functions with coefficients and applications to surface cluster algebras , 2020, 2007.05483.

[14]  Cluster algebras: Notes for the CDM-03 conference , 2003, math/0311493.

[15]  N. Ilten,et al.  Hilbert Schemes and Toric Degenerations for Low Degree Fano Threefolds , 2012, 1202.0510.

[16]  Tilting theory and cluster combinatorics , 2004, math/0402054.

[17]  D. S. Rim Equivariant $G$-structure on versal deformations , 1980 .

[18]  P. Cao,et al.  The enough g-pairs property and denominator vectors of cluster algebras , 2018, Mathematische Annalen.

[19]  Alma E. Cavazos-Gaither,et al.  Experiment , 2018, Encyclopedia of Evolutionary Psychological Science.

[20]  Giovanni Cerulli Irelli,et al.  Caldero-Chapoton algebras , 2012, 1208.3310.

[21]  S. Fomin,et al.  Introduction to Cluster Algebras. Chapter 6 , 2020, 2008.09189.

[22]  Eleonore Faber,et al.  Classification of singularities of cluster algebras of finite type , 2021 .

[23]  N. Ilten,et al.  Degenerations to unobstructed Fano Stanley–Reisner schemes , 2011, 1102.4521.

[24]  B. Keller,et al.  On cluster algebras with coefficients and 2-Calabi-Yau categories , 2007, 0710.3152.

[25]  O. Iyama,et al.  $\tau$-tilting finite algebras, bricks and $g$-vectors , 2015, 1503.00285.

[26]  N. Ilten Versal deformations and local Hilbert schemes , 2011, 1107.2416.

[27]  Bernd Sturmfels,et al.  Multigraded Hilbert schemes , 2002, math/0201271.

[28]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[29]  B. Keller,et al.  From triangulated categories to cluster algebras , 2005, math/0506018.

[30]  Cluster algebra structures and semicanonical bases for unipotent groups , 2007, math/0703039.

[31]  I. Assem Tilting theory - an introduction , 1990 .

[32]  M. André Homologie des algèbres commutatives , 1974 .

[33]  A. B. Buan,et al.  Cluster-tilting theory , 2008 .

[34]  J. Scott Grassmannians and Cluster Algebras , 2003, math/0311148.

[35]  Fan Qin Bases for upper cluster algebras and tropical points , 2019, Journal of the European Mathematical Society.

[36]  G. Lusztig Semicanonical Bases Arising From Enveloping Algebras , 2000 .

[37]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[38]  J. Weyman,et al.  Quivers with potentials and their representations II: Applications to cluster algebras , 2009, 0904.0676.

[39]  Alfredo N'ajera Ch'avez A 2-Calabi–Yau realization of finite-type cluster algebras with universal coefficients , 2015, Mathematische Zeitschrift.

[40]  Paul Hacking,et al.  Canonical bases for cluster algebras , 2014, 1411.1394.

[41]  T. Nakanishi Synchronicity phenomenon in cluster patterns , 2019, Journal of the London Mathematical Society.

[42]  Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.

[43]  Jan Stevens,et al.  Computing Versal Deformations , 1995, Exp. Math..

[44]  R. Harrington Part II , 2004 .

[45]  B. M. Fulk MATH , 1992 .

[46]  Jenna Rajchgot,et al.  Lower bound cluster algebras: presentations, Cohen-Macaulayness, and normality , 2015, 1508.02314.

[47]  J. Grabowski,et al.  Graded cluster algebras , 2013, 1309.6170.

[48]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[49]  M. Gross,et al.  Birational geometry of cluster algebras , 2013, 1309.2573.

[50]  B. Keller Triangulated Categories: Cluster algebras, quiver representations and triangulated categories , 2008, 0807.1960.

[51]  J. Grabowski,et al.  Graded Frobenius Cluster Categories , 2016, Documenta Mathematica.

[52]  Alfredo N'ajera Ch'avez,et al.  Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras , 2020, 2007.14972.

[53]  K. Altmann,et al.  Deforming Stanley–Reisner schemes , 2009, 0901.2502.

[54]  S. Fomin,et al.  Y-systems and generalized associahedra , 2001, hep-th/0111053.

[55]  Z. Teitler,et al.  TORIC VARIETIES , 2010 .

[56]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[57]  S. Fomin,et al.  Cluster algebras II: Finite type classification , 2002, math/0208229.

[58]  Nathan Reading,et al.  Universal geometric cluster algebras , 2012, 1209.3987.

[59]  C. Geiss,et al.  Kac–Moody groups and cluster algebras , 2010, 1001.3545.

[60]  Laurent Demonet Categorification of Skew-symmetrizable Cluster Algebras , 2009, 0909.1633.