High-power ultrafast laser diodes

Several ultrafast optical pulse generation techniques utilizing external cavity semiconductor lasers are described. These techniques include active mode locking, passive mode locking, hybrid mode locking, and several chirp compensation techniques. Utilizing these techniques, optical pulses of 200 fs in duration with over 160 W of peak power have been generated, making these pulses both the shortest and most intense ever generated with a semiconductor injection diode laser system. These pulses have been used to study the ultrafast amplification characteristics of semiconductor lasers. The results presented reveal the nature of the effects which dominate the pulse shaping mechanisms in external cavity hybrid mode-locked diode lasers. >

[1]  H. Haus Theory of mode locking with a slow saturable absorber , 1975 .

[2]  Hermann A. Haus,et al.  Picosecond pulse generation with a cw GaAlAs laser diode , 1978 .

[3]  Hiroyuki Yokoyama,et al.  Picosecond optical pulse generation from an r.f. modulated AlGaAs d.h. diode laser , 1979 .

[4]  P. Ho Coherent pulse generation with a GaAlAs laser by active modelocking , 1979 .

[5]  E. Ippen,et al.  Picosecond pulse generation by passive mode locking of diode lasers , 1980 .

[6]  H. A. Haus,et al.  Models of modelocking a laser diode in an external resonator , 1980 .

[7]  D. Bradley,et al.  Bandwidth-Limited Picosecond Pulse Generation in an Actively Mode-Locked GaAlAs Diode Laser , 1980 .

[8]  J. P. Ziel Active mode locking of double heterostructure lasers in an external cavity , 1981 .

[9]  W. E. Sleat,et al.  Bandwidth-limited picosecond pulses from an actively mode-locked GaAlAs diode laser , 1981 .

[10]  R. Logan,et al.  Subpicosecond pulses from passively mode‐locked GaAs buried optical guide semiconductor lasers , 1981 .

[11]  H. Inaba,et al.  Generation of subpicosecond coherent optical pulses by passive mode locking of an AlGaAs diode laser , 1982 .

[12]  L. Bergman,et al.  Transient behavior of an actively mode‐locked semiconductor laser diode , 1982 .

[13]  C. W. Gabel,et al.  Picosecond electro‐optic sampling system , 1982 .

[14]  Kam Y. Lau,et al.  Passive mode locking of buried heterostructure lasers with nonuniform current injection , 1983 .

[15]  R. A. Logan,et al.  Dispersion of the group velocity refractive index in GaAs double heterostructure lasers , 1983 .

[16]  Gerard Mourou,et al.  Subpicosecond electrical sampling , 1983 .

[17]  P. W. Smith,et al.  Nonlinear optics with a diode-laser light source. , 1983, Optics letters.

[18]  Roger S. Putnam,et al.  Modelocked Picosecond Pulses From 490 nm To 2 µm With Optically Pumped Semiconductor Lasers , 1983, Optics & Photonics.

[19]  W. A. Stallard,et al.  Bandwidth-limited picosecond pulse generation in a synchronously pumped GaAs laser containing a variable absorber diode , 1983 .

[20]  P. W. Smith,et al.  Applications of all-optical switching and logic , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[21]  R. Dupuis,et al.  Mode‐locked picosecond pulse generation from high power phase‐locked GaAs laser arrays , 1984 .

[22]  D. Miller,et al.  Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures , 1984 .

[23]  J. Vukusic,et al.  Tunable mode-locked semiconductor lasers incorporating Brewster-angled diodes , 1984 .

[24]  P. W. Smith,et al.  Passive mode locking of a semiconductor diode laser. , 1984, Optics letters.

[25]  David A. B. Miller,et al.  Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities , 1985 .

[26]  Yaron Silberberg,et al.  Theory of mode locking of a laser diode with a multiple-quantum-well structure , 1985 .

[27]  J. McInerney,et al.  Bandwidth-limited picosecond pulse generation by hybrid mode-locking in a ring cavity GaAlAs laser , 1985 .

[28]  Andrew M. Weiner,et al.  Spectral windowing of frequency‐modulated optical pulses in a grating compressor , 1985 .

[29]  J. Gordon,et al.  Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. , 1985, Optics letters.

[30]  Kam Y. Lau,et al.  Passive and active mode locking of a semiconductor laser without an external cavity , 1985 .

[31]  R. Burnham,et al.  High peak power and gateable picosecond optical pulses from a diode array traveling‐wave amplifier and a mode‐locked diode laser , 1986 .

[32]  Erich P. Ippen,et al.  Observations of subpicosecond dynamics in GaAlAs laser diodes , 1986 .

[33]  R. Fork,et al.  Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain , 1986 .

[34]  Y. Silberberg,et al.  Subpicosecond pulses from a mode-locked semiconductor laser , 1986 .

[35]  Gadi Eisenstein,et al.  Timing jitter in mode‐locked and gain‐switched InGaAsP injection lasers , 1986 .

[36]  D. Linde Characterization of the noise in continuously operating mode-locked lasers , 1986 .

[37]  J. Kuhl,et al.  Bandwidth-limited picosecond pulse generation in an actively mode-locked GaAs laser with intracavity chirp compensation. , 1987, Optics letters.

[38]  E. Yablonovitch,et al.  Extreme selectivity in the lift‐off of epitaxial GaAs films , 1987 .

[39]  Oscar E. Martínez,et al.  3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region , 1987 .

[40]  David A. B. Miller,et al.  Quantum Wells For Optical Information Processing , 1987 .

[41]  Erich P. Ippen,et al.  Subpicosecond gain dynamics in GaAlAs laser diodes , 1987 .

[42]  P. Becker,et al.  Compression of optical pulses to six femtoseconds by using cubic phase compensation. , 1987, Optics letters.

[43]  Andrew M. Weiner,et al.  Picosecond and femtosecond Fourier pulse shape synthesis , 1987 .

[44]  P. Vasil'ev Picosecond injection laser: a new technique for ultrafast Q-switching , 1988 .

[45]  Scott W. Corzine,et al.  Actively mode‐locked GaInAsP laser with subpicosecond output , 1988 .

[46]  Gerard Mourou,et al.  Generation of ultrahigh peak power pulses by chirped pulse amplification , 1988 .

[47]  Gregory Raybon,et al.  Distortionless picosecond pulse amplification and gain compression in a traveling‐wave InGaAsP optical amplifier , 1988 .

[48]  Mark J. W. Rodwell,et al.  Subpicosecond laser timing stabilization , 1988 .

[49]  Gerard A. Alphonse,et al.  High-power superluminescent diodes , 1987 .

[50]  Gregory Raybon,et al.  Amplification of high repetition rate picosecond pulses using an InGaAsP traveling-wave optical amplifier , 1988 .

[51]  A. Lowery Explanation and modelling of pulse compression and broadening in near-travelling-wave laser amplifiers , 1988 .

[52]  John E. Bowers,et al.  Dynamic detuning in actively mode-locked semiconductor lasers , 1989 .

[53]  Mark J. W. Rodwell,et al.  Noise characterization of femtosecond fiber Raman soliton lasers , 1989, Annual Meeting Optical Society of America.

[54]  Y. Kawai,et al.  Gain-switched picosecond pulse (<10 ps) generation from 1.3 mu m InGaAsP laser diodes , 1989 .

[55]  D. Miller Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[56]  S. Corzine,et al.  Actively mode-locked semiconductor lasers , 1989 .

[57]  Kam Y. Lau,et al.  Short-pulse and high-frequency signal generation in semiconductor lasers , 1989 .

[58]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[59]  Gregory Raybon,et al.  Repetition Rate Dependence of Gain Compression in InGaAsP Optical Amplifiers , 1989, Integrated and Guided-Wave Optics.

[60]  N. A. Olsson,et al.  Spectral shift and distortion due to self‐phase modulation of picosecond pulses in 1.5 μm optical amplifiers , 1989 .

[61]  Dietrich Marcuse,et al.  Reflection loss of laser mode from tilted end mirror , 1989 .

[62]  J. Wiesenfeld,et al.  Compression of picosecond pulses from diode lasers using a modified grating-pair compressor. , 1990, Optics letters.

[63]  G. Eisenstein,et al.  Short pulse gain saturation in InGaAsP diode laser amplifiers , 1990, IEEE Photonics Technology Letters.

[64]  Masataka Nakazawa,et al.  Femtosecond optical pulse generation using a distributed-feedback laser diode , 1990 .

[65]  A. S. Hou,et al.  Tunable, picosecond pulse generation using a compressed, modelocked laser diode source , 1990, IEEE Photonics Technology Letters.

[66]  John C. Connolly,et al.  High peak power picosecond pulse generation from AlGaAs external cavity mode‐locked semiconductor laser and traveling‐wave amplifier , 1990 .

[67]  B. N. Gomatam,et al.  Theory of hot carrier effects on nonlinear gain in GaAs-GaAlAs lasers and amplifiers , 1990 .

[68]  Gregory Raybon,et al.  Transform‐limited 1.4 ps optical pulses from a monolithic colliding‐pulse mode‐locked quantum well laser , 1990 .

[69]  John E. Bowers,et al.  Monolithic hybrid mode‐locked 1.3 μm semiconductor lasers , 1990 .

[70]  Gadi Eisenstein,et al.  Femtosecond gain dynamics in InGaAsP optical amplifiers , 1990 .

[71]  M. Nakazawa,et al.  Femtosecond erbium‐doped optical fiber amplifier , 1990 .

[72]  Yoh Ogawa,et al.  Generation of an extremely short single mode pulse (∼2 ps) by fiber compression of a gain‐switched pulse from a 1.3 μm distributed‐feedback laser diode , 1991 .

[73]  Chang-Hee Lee,et al.  Limits on amplification of picosecond pulses by using semiconductor laser traveling-wave amplifiers , 1991 .

[74]  S. Friberg,et al.  Sub‐100 femtosecond pulses from an external‐cavity surface‐emitting InGaAs/InP multiple quantum well laser with soliton‐effect compression , 1991 .

[75]  T. Kamiya,et al.  A scheme of picosecond pulse shaping using gain saturation characteristics of semiconductor laser amplifiers , 1991 .

[76]  Erich P. Ippen,et al.  Ultrafast refractive index dynamics in AlGaAs diode laser amplifiers , 1991 .

[77]  J. Mork,et al.  Nonlinear gain suppression in semiconductor lasers due to carrier heating , 1991, IEEE Photonics Technology Letters.

[78]  John E. Bowers,et al.  Comparison of timing jitter in external and monolithic cavity mode‐locked semiconductor lasers , 1991 .

[79]  D. H. Hartman,et al.  Optical clock distribution using a mode-locked semiconductor laser diode system , 1991 .

[80]  Eckehard Schöll,et al.  Theory of subpicosecond pulse generation by active modelocking of a semiconductor laser amplifier in an external cavity: limits for the pulsewidth , 1991 .