Photometric stereo under dichromatic reflectance framework dealing with non-Lambertian surfaces

Photometric stereo is well-established to estimate surface orientations for Lambertian surfaces, while it remains challenging for surfaces with non-Lambertian reflectance. This paper presents a new framework of photometric stereo (PS) using the dichromatic reflectance theory with color images in separating diffuse and specular components in order to better estimate local surface orientations for non-Lambertian surfaces. These local surface orientations can be further integrated via surface normal integration (SNI) to reconstruct the surface in 3D. This framework opens a door to tackle specularities separately as meaningful signals rather than outliers as most of the previously proposed techniques did. Experiments on synthetic and real images demonstrated the state-of-the-art performance.

[1]  David J. Kriegman,et al.  Color Subspaces as Photometric Invariants , 2006, CVPR.

[2]  Hsien-Che Lee,et al.  Modeling Light Reflection for Computer Color Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[4]  Tomonari Furukawa,et al.  Microtexture Road Profiling System Using Photometric Stereo , 2015 .

[5]  Szymon Rusinkiewicz,et al.  Reflectance Models , 2014, Computer Vision, A Reference Guide.

[6]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[7]  David J. Kriegman,et al.  Color Subspaces as Photometric Invariants , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[8]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[9]  Tomonari Furukawa,et al.  Design and Calibration of a 3D High-Resolution Surface Profiling System Using Photometric Stereo , 2015 .

[10]  David J. Kriegman,et al.  Beyond Lambert: reconstructing specular surfaces using color , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[12]  Sanjeev J. Koppal,et al.  Lambertian Reflectance , 2020, Computer Vision, A Reference Guide.

[13]  Takeo Kanade,et al.  Determining shape and reflectance of hybrid surfaces by photometric sampling , 1989, IEEE Trans. Robotics Autom..

[14]  Athinodoros S. Georghiades,et al.  Incorporating the Torrance and Sparrow model of reflectance in uncalibrated photometric stereo , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  Andrew Zisserman,et al.  Multiple View Geometry , 1999 .

[16]  Sabine Süsstrunk,et al.  What is the space of spectral sensitivity functions for digital color cameras? , 2013, 2013 IEEE Workshop on Applications of Computer Vision (WACV).

[17]  Shree K. Nayar,et al.  Generalization of the Lambertian model and implications for machine vision , 1995, International Journal of Computer Vision.

[18]  Maria Petrou,et al.  The 4-Source Photometric Stereo Technique for Three-Dimensional Surfaces in the Presence of Highlights and Shadows , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Yongtian Wang,et al.  Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery , 2010, ACCV.