Twisted mass transport enabled by the angular momentum of light

Abstract. Light may carry both orbital angular momentum (AM) and spin AM. The former is a consequence of its helical wavefront, and the latter is a result of its rotating transverse electric field. Intriguingly, the light–matter interaction with such fields shows that the orbital AM of light causes a physical “twist” in a range of materials, including metal, silicon, azopolymer, and even liquid-phase resin. This process may be aided by the light’s spin AM, resulting in the formation of various helical structures. The exchange between the AM of light and matter offers not only unique helical structures at the nanoscale but also entirely novel fundamental phenomena with regard to the light–matter interaction. This will lead to the future development of advanced photonics devices, including metamaterials for highly sensitive detectors as well as reactions for chiral chemical composites. Here, we focus on interactions between the AM of light and azopolymers, which exhibit some of the most diverse structures and phenomena observed. These studies result in helical surface relief structures in azopolymers and will leverage next-generation applications with light fields carrying optical AM.

[1]  Takashi Fukuda,et al.  Photoinduced surface relief formation on azopolymer films: A driving force and formed relief profile , 2002 .

[2]  Hirofumi Hidai,et al.  Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures , 2016 .

[3]  N. Miyanaga,et al.  Parallel fabrication of spiral surface structures by interference pattern of circularly polarized beams , 2018, Scientific Reports.

[4]  Luisa Torsi,et al.  A sensitivity-enhanced field-effect chiral sensor. , 2008, Nature materials.

[5]  Satoru Shoji,et al.  Two-photon induced polymer nanomovement. , 2008, Optics express.

[6]  A. Yariv,et al.  Self-focusing and self-trapping of optical beams upon photopolymerization. , 1996, Optics letters.

[7]  Pavel Zemánek,et al.  Formation of long and thin polymer fiber using nondiffracting beam. , 2006, Optics express.

[8]  Zouheir Sekkat,et al.  Optical tweezing by photomigration. , 2016, Applied optics.

[9]  Takashige Omatsu,et al.  Light induced conch-shaped relief in an azo-polymer film , 2014, Scientific reports.

[10]  K. Cui,et al.  Dynamically sculpturing plasmonic vortices: from integer to fractional orbital angular momentum , 2016, Scientific Reports.

[11]  H. Giessen,et al.  Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices , 2017, Science.

[12]  Takashi Fukuda,et al.  Photoinduced surface relief gratings on azopolymer films: Analysis by a fluid mechanics model , 1999 .

[13]  C. Henderson,et al.  Mesoscale surface plasmons: modelling and imaging using near-field scanning optical microscopy. , 2018, Optics express.

[14]  Jayant Kumar,et al.  Gradient force: The mechanism for surface relief grating formation in azobenzene functionalized polymers , 1998 .

[15]  Ryuji Morita,et al.  Transfer of light helicity to nanostructures. , 2013, Physical review letters.

[16]  Lorenzo Marrucci,et al.  Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination , 2012, Nature Communications.

[17]  R. Morita,et al.  Optical Vortices Illumination Enables the Creation of Chiral Nanostructures , 2017 .

[18]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[19]  Xiaogong Wang,et al.  Trans – Cis Isomerization , 2017 .

[20]  Jörg Ackermann,et al.  Light-induced molecular motion of azobenzene-containing molecules: a random-walk model , 2006 .

[21]  Daisuke Barada,et al.  Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam. , 2017, Optics express.

[22]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[23]  P. Maddalena,et al.  Real‐time monitoring of the surface relief formation on azo‐polymer films upon near‐field excitation , 2008, Journal of microscopy.

[24]  E. Wright,et al.  Photopolymerization with Light Fields Possessing Orbital Angular Momentum: Generation of Helical Microfibers , 2018, ACS Photonics.

[25]  D. Grier A revolution in optical manipulation , 2003, Nature.

[26]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[27]  Daisuke Barada,et al.  Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination , 2016 .

[28]  Daisuke Sakai,et al.  Nanoscale chiral surface relief of azo-polymers with nearfield OAM light. , 2018, Optics express.

[29]  Anita C Jones,et al.  Two-photon-induced photoisomerization of an azo dye , 2005 .

[30]  Ryuji Morita,et al.  Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures , 2012, Nano letters.

[31]  Sheng-wei Lee,et al.  Kinetic investigation of the electrochemical synthesis of vertically-aligned periodic arrays of silicon nanorods on (001)Si substrate , 2010 .

[32]  Jayant Kumar,et al.  Photoinduced surface deformations on azobenzene polymer films , 1999 .

[33]  Wei-Yi Tsai,et al.  Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. , 2014, Nano letters.

[34]  Miles J Padgett,et al.  Orbital angular momentum 25 years on [Invited]. , 2017, Optics express.

[35]  Nirmal K. Viswanathan,et al.  Surface relief structures on azo polymer films , 1999 .

[36]  Lorenzo Marrucci,et al.  Molecular model for light-driven spiral mass transport in azopolymer films. , 2013, Physical review letters.

[37]  Y. Inouye,et al.  Near-field optical mapping of single gold nano particles using photo-induced polymer movement of azo-polymers , 2017 .

[38]  Paul Rochon,et al.  Optically induced surface gratings on azoaromatic polymer films , 1995 .

[39]  Takahiro Kuga,et al.  Novel Optical Trap of Atoms with a Doughnut Beam , 1997 .

[40]  T. Krauss,et al.  An Organic Vortex Laser. , 2018, ACS nano.

[41]  Ryuji Morita,et al.  Metal microneedle fabrication using twisted light with spin. , 2010, Optics express.

[42]  Johannes Courtial,et al.  Light’s Orbital Angular Momentum , 2004 .

[43]  Wiktor Walasik,et al.  Nanoscale orbital angular momentum beam instabilities in engineered nonlinear colloidal media. , 2017, Optics express.

[44]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[45]  Arri Priimagi,et al.  Optical Interference Lithography Using Azobenzene‐Functionalized Polymers for Micro‐ and Nanopatterning of Silicon , 2011, Advanced materials.

[46]  S. Hell,et al.  Near-infrared STED nanoscopy with an engineered bacterial phytochrome , 2018, Nature Communications.

[47]  F. J. Rodríguez-Fortuño,et al.  Spin-orbit interactions of light , 2015, 1505.02864.

[48]  S. Syubaev,et al.  Direct laser printing of chiral plasmonic nanojets by vortex beams , 2017, Optics express.

[49]  Wolfgang Wende,et al.  STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA , 2013, Nature Methods.

[50]  S Kawata,et al.  The anisotropic nanomovement of azo-polymers. , 2007, Optics express.

[51]  Ullrich Pietsch,et al.  From anisotropic photo-fluidity towards nanomanipulation in the optical near-field , 2005, Nature materials.

[52]  Hirofumi Hidai,et al.  Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle , 2016, Scientific Reports.

[53]  M J Padgett,et al.  Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. , 2003, Physical review letters.

[54]  Søren Hvilsted,et al.  MEAN-FIELD THEORY OF PHOTOINDUCED FORMATION OF SURFACE RELIEFS IN SIDE-CHAIN AZOBENZENE POLYMERS , 1998 .

[55]  Yixin Zhang,et al.  Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean. , 2017, Optics express.

[56]  S. Khonina,et al.  Zero-orbital-angular-momentum laser printing of chiral nanoneedles. , 2017, Optics letters.

[57]  Stephen M. Barnett,et al.  On the natures of the spin and orbital parts of optical angular momentum , 2016 .

[58]  N. Litchinitser,et al.  Spinning light on the nanoscale. , 2014, Nano letters.

[59]  S. Barnett,et al.  Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. , 2004, Physical review letters.

[60]  Rainer Hagen,et al.  Photoaddressable Polymers for Optical Data Storage , 2001 .

[61]  Paul Rochon,et al.  Mechanism of Optically Inscribed High-Efficiency Diffraction Gratings in Azo Polymer Films , 1996 .

[62]  Bin Zhang,et al.  Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence. , 2014, Optics express.

[63]  Jian Wang,et al.  Advances in communications using optical vortices , 2016 .

[64]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[65]  Norman R. Heckenberg,et al.  Angular momentum of a strongly focused Gaussian beam , 2008 .

[66]  J. Kumar,et al.  Formation mechanism of surface relief structures on amorphous azopolymer films , 2006 .

[67]  Stephen M. Barnett,et al.  Optical angular-momentum flux* , 2002 .

[68]  Takashige Omatsu,et al.  Investigation of the fluorescence depletion process in the condensed phase; application to a tryptophan aqueous solution , 2003 .

[69]  Peng Zhang,et al.  Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities. , 2013, Physical review letters.

[70]  Natalia M. Litchinitser,et al.  Shrinking optical vortex to the nanoscale , 2018, Other Conferences.

[71]  Zouheir Sekkat,et al.  Photo-Orientation by Photoisomerization , 2002 .

[72]  Paul Rochon,et al.  Model of laser-driven mass transport in thin films of dye-functionalized polymers , 1998 .

[73]  Jean-Michel Nunzi,et al.  Anisotropy of the photoinduced translation diffusion of azo-dyes , 1998 .

[74]  Natalia M. Litchinitser,et al.  Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens. , 2018, ACS nano.

[75]  L Mahadevan,et al.  Photoinduced deformations of beams, plates, and films. , 2004, Physical review letters.

[76]  Xiaoliang Ma,et al.  A planar chiral meta-surface for optical vortex generation and focusing , 2015, Scientific Reports.

[77]  Jayant Kumar,et al.  Single laser beam-induced surface deformation on azobenzene polymer films , 1998 .

[78]  Tahei Tahara,et al.  Femtosecond Time-Resolved Fluorescence Study of Photoisomerization of trans-Azobenzene , 2001 .

[79]  David McGloin,et al.  Spin-to-orbital angular momentum conversion in a strongly focused optical beam. , 2007, Physical review letters.

[80]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.