Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.

This critical review summarizes developments in microfluidic platforms that enable the miniaturization, integration, automation and parallelization of (bio-)chemical assays (see S. Haeberle and R. Zengerle, Lab Chip, 2007, 7, 1094-1110, for an earlier review). In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the easy, fast, and cost-efficient implementation of different application-specific (bio-)chemical processes. In our review we focus on recent developments from the last decade (2000s). We start with a brief introduction into technical advances, major market segments and promising applications. We continue with a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations of every platform. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electrokinetics, electrowetting, surface acoustic waves, and dedicated systems for massively parallel analysis. This review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposability, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols (295 references).

[1]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Simon L. Goren,et al.  Improving resolution in coulter counting by hydrodynamic focusing , 1968 .

[3]  N. G. Anderson,et al.  Computer interfaced fast analyzers. , 1969, Science.

[4]  Comparative study of 14C-labeled purified protein derivative from various mycobacteria. I. Preparation of 14C-labeled purified protein derivative antigens and their adsorption to glass. , 1970, Applied microbiology.

[5]  W. F. Johnson,et al.  Development of a miniature fast analyzer. , 1972, Clinical chemistry.

[6]  J. Pitha,et al.  Inhibition of cell-free protein synthesis by poly(9-vinyladenine), poly(1-vinyluracil), and the corresponding vinyl copolymer. , 1972, Biochemistry.

[7]  C. Glad,et al.  Immunocapillarymigration--a new method for immunochemical quantitation. , 1978, Analytical biochemistry.

[8]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[9]  A. Schuurs,et al.  Sol particle agglutination immunoassay for human chorionic gonadotrophin , 1980 .

[10]  D. Sharp An overview of Rayleigh-Taylor instability☆ , 1984 .

[11]  E. F. Ullman,et al.  An internally referenced test strip immunoassay for morphine. , 1983, Clinical chemistry.

[12]  H. Schønheyder,et al.  Effects of bovine serum albumin on antibody determination by the enzyme-linked immunosorbent assay. , 1984, Journal of immunological methods.

[13]  Shuichi Shoji,et al.  Prototype miniature blood gas analyser fabricated on a silicon wafer , 1988 .

[14]  H. Lintel,et al.  A piezoelectric micropump based on micromachining of silicon , 1988 .

[15]  J M Hicks,et al.  Reliability of home pregnancy-test kits in the hands of laypersons. , 1989, The New England journal of medicine.

[16]  Arnaud Jaccard,et al.  Reliability of home pregnancy-test kits in the hands of laypersons. , 1989 .

[17]  A. Manz,et al.  Design of an open-tubular column liquid chromatograph using silicon chip technology , 1990 .

[18]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[19]  D. J. Harrison,et al.  Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip , 1992 .

[20]  A. Manz,et al.  A silicon flow cell for optical detection in miniaturized total chemical analysis systems , 1992 .

[21]  S. Nilsson,et al.  Latex-based thin-layer immunoaffinity chromatography for quantitation of protein analytes. , 1992, Analytical biochemistry.

[22]  T. Chard Pregnancy tests: a review. , 1992, Human reproduction.

[23]  S N Buhl,et al.  Portable simultaneous multiple analyte whole-blood analyzer for point-of-care testing. , 1992, Clinical chemistry.

[24]  Optimization of the signal-to-noise ratio in south-western assays by using lipid-free BSA as blocking reagent. , 1992, Nucleic acids research.

[25]  D. J. Harrison,et al.  Capillary electrophoresis and sample injection systems integrated on a planar glass chip , 1992 .

[26]  A. Manz,et al.  Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights , 1993 .

[27]  L. Sarkozi,et al.  Analytical evaluation of i-STAT Portable Clinical Analyzer and use by nonlaboratory health-care professionals. , 1993, Clinical chemistry.

[28]  S C Lou,et al.  One-step competitive immunochromatographic assay for semiquantitative determination of lipoprotein(a) in plasma. , 1993, Clinical chemistry.

[29]  Jens Anders Branebjerg,et al.  Microfluidics-a review , 1993 .

[30]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[31]  George M. Whitesides,et al.  Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching , 1993 .

[32]  P Wilding,et al.  Evaluation of a novel point-of-care system, the i-STAT portable clinical analyzer. , 1993, Clinical chemistry.

[33]  N F de Rooij,et al.  Micromachined analyzers on a silicon chip. , 1994, Clinical chemistry.

[34]  S. Jeanneret,et al.  Integrated flow-regulated silicon micropump , 1994 .

[35]  Masayoshi Esashi,et al.  Microflow devices and systems , 1994 .

[36]  S. P. Fodor,et al.  Light-generated oligonucleotide arrays for rapid DNA sequence analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Andreas Manz,et al.  Continuous Sample Pretreatment Using a Free-Flow Electrophoresis Device Integrated onto a Silicon Chip , 1994 .

[38]  C. T. Schembri,et al.  Centrifugation and capillarity integrated into a multiple analyte whole blood analyser , 1995, The Journal of automatic chemistry.

[39]  M. Richter,et al.  A bidirectional silicon micropump , 1995 .

[40]  S. Jacobson,et al.  Microfabricated chemical measurement systems , 1995, Nature Medicine.

[41]  M. Ronaghi,et al.  Real-time DNA sequencing using detection of pyrophosphate release. , 1996, Analytical biochemistry.

[42]  M. A. Northrup,et al.  Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. , 1996, Analytical chemistry.

[43]  David R. Walt,et al.  Ordered nanowell arrays , 1996 .

[44]  J. Desnottes New targets and strategies for the development of antibacterial agents. , 1996, Trends in biotechnology.

[45]  Anwendungspotentiale für chemische und biologische Mikroreaktoren , 1997 .

[46]  A. Berg,et al.  Micro Total Analysis Systems: Microfluidic Aspects, Integration Concept and Applications , 1997 .

[47]  A. Persidis High-throughput screening , 1998, Bio/Technology.

[48]  Marc Madou,et al.  LabCD: a centrifuge-based microfluidic platform for diagnostics , 1998, Photonics West - Biomedical Optics.

[49]  M. Heller,et al.  Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips , 1998, Nature Biotechnology.

[50]  H. Le,et al.  Progress and Trends in Ink-jet Printing Technology , 1998, Journal of Imaging Science and Technology.

[51]  Joe T. Lin,et al.  Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays , 1999 .

[52]  H Morgan,et al.  Separation of submicron bioparticles by dielectrophoresis. , 1999, Biophysical journal.

[53]  Wolfgang Ehrfeld,et al.  State-of-the-art in microreaction technology : concepts, manufacturing and applications , 1999 .

[54]  David R. Walt,et al.  Bead-based Fiber-Optic Arrays , 2000, Science.

[55]  Andreas Manz,et al.  Chip-based microsystems for genomic and proteomic analysis , 2000 .

[56]  S. Quake,et al.  From micro- to nanofabrication with soft materials. , 2000, Science.

[57]  R. Hertzberg,et al.  High-throughput screening: new technology for the 21st century. , 2000, Current opinion in chemical biology.

[58]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[59]  C. Kim,et al.  Surface-tension-driven microactuation based on continuous electrowetting , 2000, Journal of Microelectromechanical Systems.

[60]  I. Hsing,et al.  An improved anodic bonding process using pulsed voltage technique , 2000, Journal of Microelectromechanical Systems.

[61]  R. Fair,et al.  Electrowetting-based actuation of liquid droplets for microfluidic applications , 2000 .

[62]  M. Moia,et al.  Accuracy of a portable prothrombin time monitor (Coagucheck) in patients on chronic oral anticoagulant therapy: a prospective multicenter study. , 2000, Thrombosis research.

[63]  Norman F. Sheppard,et al.  Centrifugal Microfluidics: Applications , 2000 .

[64]  Anna Edman Örlefors,et al.  Microfluidics in a Rotating CD , 2000 .

[65]  S A Sundberg,et al.  High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. , 2000, Current opinion in biotechnology.

[66]  J. Corliss Two most remarkable Amoeba men: Joseph Leidy (1823-1891) of Philadelphia and Eugène Penard (1855-1954) of Geneva. , 2001, Protist.

[67]  Marc Madou,et al.  Design and Fabrication of CD-like Microfluidic Platforms for Diagnostics: Microfluidic Functions , 2001 .

[68]  George M. Whitesides,et al.  Laminar flows: Subcellular positioning of small molecules , 2001, Nature.

[69]  Stephen R. Quake,et al.  A Microfabricated Rotary Pump , 2001 .

[70]  J Segura,et al.  Sweat testing of MDMA with the Drugwipe analytical device: a controlled study with two volunteers. , 2001, Journal of analytical toxicology.

[71]  M. Madou,et al.  Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics. , 2001, Analytical chemistry.

[72]  Glenn E Croston,et al.  Functional cell-based uHTS in chemical genomic drug discovery. , 2002, Trends in biotechnology.

[73]  Thomas Justin Clark,et al.  The Triage Cardiac Panel , 2002 .

[74]  S. Quake,et al.  Microfluidic Large-Scale Integration , 2002, Science.

[75]  M. Madou,et al.  Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform. , 2002, Analytical chemistry.

[76]  R. Fair,et al.  Electrowetting-based actuation of droplets for integrated microfluidics. , 2002, Lab on a chip.

[77]  H. Becker,et al.  Polymer microfluidic devices. , 2002, Talanta.

[78]  C. Kim,et al.  Electrowetting and electrowetting-on-dielectric for microscale liquid handling , 2002 .

[79]  Rong-Hwa Shyu,et al.  Colloidal gold-based immunochromatographic assay for detection of ricin. , 2002, Toxicon : official journal of the International Society on Toxinology.

[80]  Toshiro Higuchi,et al.  Droplet formation in a microchannel network. , 2002, Lab on a chip.

[81]  J. Lehn,et al.  Chemical biology of dynamic combinatorial libraries. , 2002, Biochimica et biophysica acta.

[82]  T. J. Clark,et al.  The Triage Cardiac Panel: Cardiac Markers for the Triage System , 2002 .

[83]  S. Dunbar,et al.  Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. , 2003, Journal of microbiological methods.

[84]  G. Whitesides,et al.  Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies , 2003, Electrophoresis.

[85]  Mats Nilsson,et al.  Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay. , 2003, Analytical biochemistry.

[86]  Stephen R Quake,et al.  Solving the "world-to-chip" interface problem with a microfluidic matrix. , 2003, Analytical chemistry.

[87]  J. Koo,et al.  Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects , 2003 .

[88]  Helen Song,et al.  Millisecond kinetics on a microfluidic chip using nanoliters of reagents. , 2003, Journal of the American Chemical Society.

[89]  S. Cho,et al.  Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits , 2003 .

[90]  R. Ismagilov,et al.  Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. , 2003, Journal of the American Chemical Society.

[91]  Takehiko Kitamori,et al.  Integration of Chemical and Biochemical Analysis Systems into a Glass Microchip , 2003, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[92]  P. Böhme,et al.  Evolution of analytical performance in portable glucose meters in the last decade. , 2003, Diabetes care.

[93]  Phil Paik,et al.  Electrowetting-based droplet mixers for microfluidic systems. , 2003, Lab on a chip.

[94]  Helen Song,et al.  A microfluidic system for controlling reaction networks in time. , 2003, Angewandte Chemie.

[95]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[96]  Thomas Henkel,et al.  Generation of larger numbers of separated microbial populations by cultivation in segmented-flow microdevices. , 2003, Lab on a chip.

[97]  Alan Mcginnis,et al.  THE KILLER APPLICATION , 2003 .

[98]  G. Valet Past and present concepts in flow cytometry: a European perspective. , 2003, Journal of biological regulators and homeostatic agents.

[99]  Helen Song,et al.  Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers , 2003 .

[100]  Helen Song,et al.  Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. , 2003, Applied physics letters.

[101]  Phil Paik,et al.  Rapid droplet mixers for digital microfluidic systems. , 2003, Lab on a chip.

[102]  Achim Wixforth,et al.  Acoustically driven planar microfluidics , 2003 .

[103]  Aaron R Wheeler,et al.  Microfluidic device for single-cell analysis. , 2003, Analytical chemistry.

[104]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[105]  Jong Wook Hong,et al.  Integrated nanoliter systems , 2003, Nature Biotechnology.

[106]  Jan Berka,et al.  A massively parallel PicoTiterPlate™ based platform for discrete picoliter‐scale polymerase chain reactions , 2003, Electrophoresis.

[107]  Volker Hessel,et al.  Microchemical Engineering: Components, Plant Concepts, User Acceptance – Part II , 2003 .

[108]  Marc J. Madou,et al.  Centrifuge-based fluidic platforms , 2004, Proceedings of the IEEE.

[109]  D. Weitz,et al.  Geometrically mediated breakup of drops in microfluidic devices. , 2003, Physical review letters.

[110]  R. Ismagilov,et al.  Effects of viscosity on droplet formation and mixing in microfluidic channels , 2004 .

[111]  Shuichi Takayama,et al.  Computerized microfluidic cell culture using elastomeric channels and Braille displays. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[113]  Volker Hessel,et al.  Chemical microprocess technology—from laboratory-scale to production , 2004 .

[114]  Andreas Manz,et al.  On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. , 2004, Analytical chemistry.

[115]  M. Yamada,et al.  Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. , 2004, Analytical chemistry.

[116]  Monika Milewski,et al.  Decoding randomly ordered DNA arrays. , 2004, Genome research.

[117]  Joshua D. Tice,et al.  Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[118]  A Manz,et al.  Miniaturised nucleic acid analysis. , 2004, Lab on a chip.

[119]  Investigation into the applicability of the centrifugal microfluidics development of protein-platform for the ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter , 2004 .

[120]  Saif A. Khan,et al.  Transport and reaction in microscale segmented gas-liquid flow. , 2004, Lab on a chip.

[121]  Aaron R Wheeler,et al.  Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. , 2004, Analytical chemistry.

[122]  Drug Identification through in vivo Screening of Chemical Libraries , 2004, Chembiochem : a European journal of chemical biology.

[123]  Rustem F Ismagilov,et al.  A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. , 2004, Angewandte Chemie.

[124]  Saif A. Khan,et al.  Microfluidic synthesis of colloidal silica. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[125]  Rustem F Ismagilov,et al.  Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. , 2004, Analytical chemistry.

[126]  Vincent Studer,et al.  A nanoliter-scale nucleic acid processor with parallel architecture , 2004, Nature Biotechnology.

[127]  Libby G. Puckett,et al.  Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. , 2004, Analytical chemistry.

[128]  Rustem F Ismagilov,et al.  Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. , 2004, Lab on a chip.

[129]  Rustem F Ismagilov,et al.  Formation of Arrayed Droplets by Soft Lithography and Two‐Phase Fluid Flow, and Application in Protein Crystallization , 2004, Advanced materials.

[130]  Achim Wixforth,et al.  Acoustic manipulation of small droplets , 2004, Analytical and bioanalytical chemistry.

[131]  Shengnian Wang,et al.  Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. , 2004, Analytical chemistry.

[132]  Analytical Evaluation of iSTAT Portable Clinical Analyzer and Use by Nonlaboratory Health-Care Professionals , 2004 .

[133]  A. Kamholz Proliferation of microfluidics in literature and intellectual property. , 2004, Lab on a chip.

[134]  S. Fox,et al.  High-Throughput Screening: Searching for Higher Productivity , 2004, Journal of biomolecular screening.

[135]  Richard B. Fair,et al.  Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering , 2004 .

[136]  R. Fair,et al.  An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. , 2004, Lab on a chip.

[137]  Development and assessment of a miniaturised centrifugal chromatograph for reversed-phase separations in micro-channels. , 2004, The Analyst.

[138]  S. Takayama,et al.  Microfluidics for flow cytometric analysis of cells and particles , 2005, Physiological measurement.

[139]  Peter Woias,et al.  Micropumps—past, progress and future prospects , 2005 .

[140]  A. Wixforth,et al.  Planar chip device for PCR and hybridization with surface acoustic wave pump. , 2005, Lab on a chip.

[141]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[142]  Armand Ajdari,et al.  Applied physics. Droplet control for microfluidics. , 2005, Science.

[143]  George M. Whitesides,et al.  Design for mixing using bubbles in branched microfluidic channels , 2005 .

[144]  Rustem F Ismagilov,et al.  Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. , 2005, Current opinion in structural biology.

[145]  Günter Roth,et al.  Measuring biomolecular binding events with a compact disc player device. , 2005, Angewandte Chemie.

[146]  Nam-Trung Nguyen,et al.  Micromixers?a review , 2005 .

[147]  J. Rogers,et al.  Recent progress in soft lithography , 2005 .

[148]  R Zengerle,et al.  Batch-mode mixing on centrifugal microfluidic platforms. , 2005, Lab on a chip.

[149]  R. Zengerle,et al.  Integrated Sample Preparation, Reaction, and Detection on a High-Frequency Centrifugal Microfluidic Platform , 2005 .

[150]  M. Yamada,et al.  Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. , 2005, Lab on a chip.

[151]  Rustem F Ismagilov,et al.  Using microfluidics to observe the effect of mixing on nucleation of protein crystals. , 2005, Journal of the American Chemical Society.

[152]  G. Sándor,et al.  Point of care. , 2020, Journal.

[153]  R. Zengerle,et al.  Frequency-dependent transversal flow control in centrifugal microfluidics. , 2005, Lab on a chip.

[154]  Armand Ajdari,et al.  Droplet Control for Microfluidics , 2005, Science.

[155]  U. Zimmermann,et al.  Electric field-induced cell-to-cell fusion , 2005, The Journal of Membrane Biology.

[156]  V. Hessel,et al.  Micromixers—a review on passive and active mixing principles , 2005 .

[157]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[158]  R. Durst,et al.  Development of a competitive liposome-based lateral flow assay for the rapid detection of the allergenic peanut protein Ara h1 , 2005, Analytical and bioanalytical chemistry.

[159]  D. Chiu,et al.  Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. , 2005, Analytical chemistry.

[160]  M. Yamada,et al.  Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. , 2005, Lab on a chip.

[161]  P. Andersson,et al.  Simultaneous multiple immunoassays in a compact disc-shaped microfluidic device based on centrifugal force. , 2005, Clinical chemistry.

[162]  Ruslan Sanishvili,et al.  In situ data collection and structure refinement from microcapillary protein crystallization. , 2005, Journal of applied crystallography.

[163]  Gwo-Bin Lee,et al.  Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification , 2005 .

[164]  Helen Song,et al.  Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. , 2005, Analytical chemistry.

[165]  Dominique M. Roberge,et al.  Microreactor Technology: A Revolution for the Fine Chemical and Pharmaceutical Industries? , 2005 .

[166]  Axel Günther,et al.  Micromixing of miscible liquids in segmented gas-liquid flow. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[167]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[168]  Stephen R Quake,et al.  Phase knowledge enables rational screens for protein crystallization , 2006, Proceedings of the National Academy of Sciences.

[169]  Marc Madou,et al.  Lab on a CD. , 2006, Annual review of biomedical engineering.

[170]  Harry L. T. Lee,et al.  Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control. , 2006, Lab on a chip.

[171]  Radislav A Potyrailo,et al.  Analog signal acquisition from computer optical disk drives for quantitative chemical sensing. , 2006, Analytical chemistry.

[172]  Jr-Lung Lin,et al.  Integrated polymerase chain reaction chips utilizing digital microfluidics , 2006, Biomedical microdevices.

[173]  Olivier Raccurt,et al.  Computer aided design of an EWOD microdevice , 2006 .

[174]  R. Zengerle,et al.  Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance , 2006, Biomedical microdevices.

[175]  R. Zengerle,et al.  Patterning of flow and mixing in rotating radial microchannels , 2006 .

[176]  N. Pamme,et al.  Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. , 2006, Lab on a chip.

[177]  R. Zengerle,et al.  Centrifugal extraction of plasma from whole blood on a rotating disk. , 2006, Lab on a chip.

[178]  R. Zengerle,et al.  Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. , 2006, Lab on a chip.

[179]  Stephen R Quake,et al.  Microfluidic single-cell mRNA isolation and analysis. , 2006, Analytical chemistry.

[180]  M. Yamada,et al.  Microfluidic particle sorter employing flow splitting and recombining. , 2006, Analytical chemistry.

[181]  D. Weitz,et al.  Electric control of droplets in microfluidic devices. , 2006, Angewandte Chemie.

[182]  R. Garrell,et al.  Droplet-based microfluidics with nonaqueous solvents and solutions. , 2006, Lab on a chip.

[183]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[184]  Jörg Hüser,et al.  High-Throughput Screening in Drug Discovery: HUESER:HTS IN DRUG DISC. O-BK , 2006 .

[185]  Stephen R Quake,et al.  Parallel picoliter rt-PCR assays using microfluidics. , 2006, Analytical chemistry.

[186]  U. Vogel,et al.  Simple, inexpensive, and precise paraffin tissue microarrays constructed with a conventional microcompound table and a drill grinder. , 2006, American journal of clinical pathology.

[187]  Takehiko Kitamori,et al.  AC electroosmotic micromixer for chemical processing in a microchannel. , 2006, Lab on a chip.

[188]  Kuo-Sheng Ma,et al.  Dynamic automated DNA hybridization on a CD (compact disc) fluidic platform , 2006 .

[189]  Roland Zengerle,et al.  Multilamination of flows in planar networks of rotating microchannels , 2006 .

[190]  Omar Elmazria,et al.  Microfluidic device based on surface acoustic wave , 2006 .

[191]  K. Gunderson,et al.  Illumina universal bead arrays. , 2006, Methods in enzymology.

[192]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[193]  Michael G. Roper,et al.  A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability , 2006, Proceedings of the National Academy of Sciences.

[194]  R. Westervelt,et al.  Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices , 2006 .

[195]  Carsten Haber,et al.  Microfluidics in commercial applications; an industry perspective. , 2006, Lab on a chip.

[196]  Michael Brand,et al.  Micro fluid segment technique for screening and development studies on Danio rerio embryos. , 2007, Lab on a chip.

[197]  Yubing Xie,et al.  New valve and bonding designs for microfluidic biochips containing proteins. , 2007, Analytical chemistry.

[198]  Leslie Y Yeo,et al.  Microparticle collection and concentration via a miniature surface acoustic wave device. , 2007, Lab on a chip.

[199]  Marc Madou,et al.  Centrifugal microfluidics with integrated sensing microdome optodes for multiion detection. , 2007, Analytical chemistry.

[200]  A. Heeger,et al.  Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[201]  Andrea Sekulovic,et al.  PCR biocompatibility of lab-on-a-chip and MEMS materials , 2007 .

[202]  Subodh B. Rawool,et al.  Steady state approach to model gene regulatory networks - Simulation of microarray experiments , 2007, Biosyst..

[203]  Thomas Laurell,et al.  Chip integrated strategies for acoustic separation and manipulation of cells and particles. , 2007, Chemical Society reviews.

[204]  R. Zengerle,et al.  Miniaturized and highly parallel protein crystallization on a microfluidic disc , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[205]  Yoon-Kyoung Cho,et al.  One-Step Pathogen Specific DNA Extraction from Whole Blood on a Centrifugal Microfluidic Device , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[206]  Joo H. Kang,et al.  Magnetophoretic continuous purification of single-walled carbon nanotubes from catalytic impurities in a microfluidic device. , 2007, Small.

[207]  K. Wanner,et al.  Methods and Principles in Medicinal Chemistry , 2007 .

[208]  Patrick S Daugherty,et al.  Microfluidic library screening for mapping antibody epitopes. , 2007, Analytical chemistry.

[209]  Richard B. Fair,et al.  Digital microfluidics: is a true lab-on-a-chip possible? , 2007 .

[210]  Marc Madou,et al.  A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. , 2007, Colloids and surfaces. B, Biointerfaces.

[211]  Yoon‐Kyoung Cho,et al.  Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. , 2007, Lab on a chip.

[212]  A. deMello,et al.  Quantitative detection of protein expression in single cells using droplet microfluidics. , 2007, Chemical communications.

[213]  Ailiang Chen,et al.  Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device , 2007, Biomedical microdevices.

[214]  Stephen R Quake,et al.  Solvent resistant microfluidic DNA synthesizer. , 2007, Lab on a chip.

[215]  R. B. Cary,et al.  Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography , 2007, Nucleic acids research.

[216]  J. Kang,et al.  How the capillary burst microvalve works. , 2007, Journal of colloid and interface science.

[217]  Roland Zengerle,et al.  Rapid prototyping of microfluidic chips in COC , 2007 .

[218]  Monpichar Srisa-Art,et al.  High-throughput DNA droplet assays using picoliter reactor volumes. , 2007, Analytical chemistry.

[219]  Da Xing,et al.  Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends , 2007, Nucleic acids research.

[220]  Roland Zengerle,et al.  Microfluidic platforms for lab-on-a-chip applications. , 2007, Lab on a chip.

[221]  D. Ryan,et al.  Toward nanoscale genome sequencing. , 2007, Trends in biotechnology.

[222]  S. Quake,et al.  Versatile, fully automated, microfluidic cell culture system. , 2007, Analytical chemistry.

[223]  Nancy L Allbritton,et al.  CRITICAL REVIEW www.rsc.org/loc | Lab on a Chip Analysis of single mammalian cells on-chip , 2006 .

[224]  Roland Zengerle,et al.  The centrifugal microfluidic Bio-Disk platform , 2007 .

[225]  Andreas Manz,et al.  Total nucleic acid analysis integrated on microfluidic devices. , 2007, Lab on a chip.

[226]  Shang-Tian Yang,et al.  Microbioreactors for high-throughput cytotoxicity assays. , 2008, Current opinion in drug discovery & development.

[227]  George M Whitesides,et al.  Egg beater as centrifuge: isolating human blood plasma from whole blood in resource-poor settings. , 2008, Lab on a chip.

[228]  Jun Yang,et al.  A lab-on-CD prototype for high-speed blood separation , 2008 .

[229]  Yuan Wen,et al.  The future of microfluidic assays in drug development , 2008, Expert opinion on drug discovery.

[230]  Ralf Junker,et al.  Handhabung von Teststreifen zur Bestimmung von Drogen und Medikamenten bei klinisch-toxikologischen Fragestellungen / Test strip handling in screening for drugs of abuse in the clinical toxicological setting , 2008 .

[231]  J. S. Johnson,et al.  Biocompatible surfactants for water-in-fluorocarbon emulsions. , 2008, Lab on a chip.

[232]  Roland Zengerle,et al.  BLOW MOLDING OF POLYMER FOILS FOR RAPID PROTOTYPING OF MICROFLUIDIC CARTRIDGES , 2008 .

[233]  A. Bhagat,et al.  Continuous particle separation in spiral microchannels using Dean flows and differential migration. , 2008, Lab on a chip.

[234]  Roland Zengerle,et al.  UNIDIRECTIONAL SHAKE-MODE FOR MIXING HIGHLY WETTING FLUIDS ON CENTRIFUGAL PLATFORMS , 2008 .

[235]  N. Allbritton,et al.  Chemical analysis of single cells. , 2008, Annual review of analytical chemistry.

[236]  Yuejun Kang,et al.  Simultaneous particle counting and detecting on a chip. , 2008, Lab on a chip.

[237]  Monpichar Srisa-Art,et al.  Microdroplets: a sea of applications? , 2008, Lab on a chip.

[238]  B. Karon,et al.  Accuracy of capillary whole blood international normalized ratio on the CoaguChek S, CoaguChek XS, and i-STAT 1 point-of-care analyzers. , 2008, American journal of clinical pathology.

[239]  Adam Heller,et al.  Electrochemical glucose sensors and their applications in diabetes management. , 2008, Chemical reviews.

[240]  Reinhard Renneberg,et al.  InfectCheck CRP barcode-style lateral flow assay for semi-quantitative detection of C-reactive protein in distinguishing between bacterial and viral infections. , 2008, Journal of immunological methods.

[241]  R. Junker,et al.  Test strip handling for the screening of drugs of abuse in the clinical toxicological setting , 2008 .

[242]  A. Lee,et al.  Droplet microfluidics. , 2008, Lab on a chip.

[243]  A. van den Berg,et al.  Gene transfer and protein dynamics in stem cells using single cell electroporation in a microfluidic device. , 2008, Lab on a chip.

[244]  Jerry M Chen,et al.  Analysis and experiment of capillary valves for microfluidics on a rotating disk , 2008 .

[245]  Daniel Bratton,et al.  Development of quantitative cell-based enzyme assays in microdroplets. , 2008, Analytical chemistry.

[246]  Wei-Hsiang Tseng,et al.  Liposome-based immunostrip for the rapid detection of Salmonella , 2008, Analytical and bioanalytical chemistry.

[247]  Young-Ho Cho,et al.  A continuous size-dependent particle separator using a negative dielectrophoretic virtual pillar array. , 2008, Lab on a chip.

[248]  Gerard H. Markx,et al.  Dielectric measurement of cell death , 2008 .

[249]  Bingcheng Lin,et al.  Droplet-based microfluidic system for individual Caenorhabditis elegans assay. , 2008, Lab on a chip.

[250]  Alexandra Ros,et al.  Microfluidic single-cell analysis of intracellular compounds , 2008, Journal of The Royal Society Interface.

[251]  W. Schoel,et al.  A comparative study of mechanisms of surfactant inhibition. , 2008, Biochimica et biophysica acta.

[252]  Thomas Henkel,et al.  Micro Flow-Through Thermocycler with Simple Meandering Channel with Symmetric Temperature Zones for Disposable PCR-Devices in Microscope Slide Format , 2008 .

[253]  Mehmet Toner,et al.  Controlled encapsulation of single-cells into monodisperse picolitre drops. , 2008, Lab on a chip.

[254]  Roger H. Rangel,et al.  Passive flow switching valves on a centrifugal microfluidic platform , 2008 .

[255]  R. Ismagilov,et al.  Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. , 2008, Lab on a chip.

[256]  Stephen R Quake,et al.  Digital PCR provides sensitive and absolute calibration for high throughput sequencing , 2008, BMC Genomics.

[257]  Philippe Corbisier,et al.  Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number , 2009, Analytical and bioanalytical chemistry.

[258]  Viktor Stein,et al.  Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. , 2009, Analytical chemistry.

[259]  Roland Zengerle,et al.  A Novel Microfluidic Platform for Continuous DNA Extraction and Purification using Laminar Flow Magnetophoresis , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[260]  J. Radich,et al.  Absolute quantitative detection of ABL tyrosine kinase domain point mutations in chronic myeloid leukemia using a novel nanofluidic platform and mutation-specific PCR , 2009, Leukemia.

[261]  Antje J Baeumner,et al.  Liposome-enhanced lateral-flow assays for the sandwich-hybridization detection of RNA. , 2009, Methods in molecular biology.

[262]  Holger Becker,et al.  Chips, money, industry, education and the "killer application". , 2009, Lab on a chip.

[263]  D. DeVoe,et al.  Bonding of thermoplastic polymer microfluidics , 2009 .

[264]  David D Nolte,et al.  Invited Review Article: Review of centrifugal microfluidic and bio-optical disks. , 2009, The Review of scientific instruments.

[265]  Holger Becker,et al.  It's the economy... , 2009, Lab on a chip.

[266]  Abraham P Lee,et al.  Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow‐through separation of beads and cells , 2009, Electrophoresis.

[267]  Geertruida A. Posthuma-Trumpie,et al.  Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey , 2009, Analytical and bioanalytical chemistry.

[268]  E. Saphire,et al.  An efficient platform for screening expression and crystallization of glycoproteins produced in human cells , 2009, Nature Protocols.

[269]  R. Zengerle,et al.  Liquid reagent storage and release for centrifugally operated Lab-on-a-Chip systems based on a burstable seal , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[270]  Jessica Melin,et al.  In vitro embryo culture in defined, sub‐microliter volumes , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[271]  Rudolf Krska,et al.  Rapid test strips for analysis of mycotoxins in food and feed , 2009, Analytical and bioanalytical chemistry.

[272]  Andre Sharon,et al.  Low cost and manufacturable complete microTAS for detecting bacteria. , 2009, Lab on a chip.

[273]  Yoon‐Kyoung Cho,et al.  A fully automated immunoassay from whole blood on a disc. , 2009, Lab on a chip.

[274]  Wei Chen,et al.  Development and validation of an immunochromatographic assay for rapid multi-residues detection of cephems in milk. , 2009, Analytica chimica acta.

[275]  L. Gervais,et al.  Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. , 2009, Lab on a chip.

[276]  Roland Zengerle,et al.  Centrifugo-pneumatic valve for metering of highly wetting liquids on centrifugal microfluidic platforms. , 2009, Lab on a chip.

[277]  H. C. Fan,et al.  Correction: Digital PCR provides sensitive and absolute calibration for high throughput sequencing , 2009, BMC Genomics.

[278]  Jamie Hu,et al.  The evolution of commercialized glucose sensors in China. , 2009, Biosensors & bioelectronics.

[279]  Alvis Brazma,et al.  Minimum Information About a Microarray Experiment (MIAME) – Successes, Failures, Challenges , 2009, TheScientificWorldJournal.

[280]  R. White,et al.  High-Throughput Sequencing of the Zebrafish Antibody Repertoire , 2009, Science.

[281]  H Tom Soh,et al.  Controlling the selection stringency of phage display using a microfluidic device. , 2009, Lab on a chip.

[282]  Arkadij M Elizarov,et al.  Microreactors for radiopharmaceutical synthesis. , 2009, Lab on a chip.

[283]  Randall T Moon,et al.  Integrative Analysis of Genome-Wide RNA Interference Screens , 2009, Science Signaling.

[284]  Angela Cacace,et al.  High‐Throughput Screening: Evolution of Technology and Methods , 2010 .

[285]  Chris R. Kleijn,et al.  Dynamics of droplet formation at T-shaped nozzles with elastic feed lines , 2010 .