Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant

[1]  Dennis Y.C. Leung,et al.  Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant , 2007 .

[2]  D. Leung,et al.  Parametric study of solid oxide fuel cell performance , 2007 .

[3]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[4]  Dennis Y.C. Leung,et al.  A modeling study on concentration overpotentials of a reversible solid oxide fuel cell , 2006 .

[5]  K. Sumathy,et al.  Potential of renewable hydrogen production for energy supply in Hong Kong , 2006 .

[6]  Dennis Y.C. Leung,et al.  An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production , 2006 .

[7]  K. Sumathy,et al.  AN OVERVIEW OF HYDROGEN PRODUCTION FROM BIOMASS , 2006 .

[8]  S. Grigoriev,et al.  Pure hydrogen production by PEM electrolysis for hydrogen energy , 2006 .

[9]  W. Colella,et al.  Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases , 2005 .

[10]  Chang-Soo Kim,et al.  Optimization of PtIr electrocatalyst for PEM URFC , 2005 .

[11]  F. Barbir PEM electrolysis for production of hydrogen from renewable energy sources , 2005 .

[12]  Ayoub Kazim,et al.  Exergoeconomic analysis of a PEM fuel cell at various operating conditions , 2005 .

[13]  Chang-Soo Kim,et al.  Optimization of bifunctional electrocatalyst for PEM unitized regenerative fuel cell , 2004 .

[14]  Christopher J. Koroneos,et al.  Life cycle assessment of hydrogen fuel production processes , 2004 .

[15]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[16]  A. Kazim Exergy analysis of a PEM fuel cell at variable operating conditions , 2004 .

[17]  Andrew E. Lutz,et al.  Thermodynamic analysis of hydrogen production by partial oxidation reforming , 2004 .

[18]  K. Yasuda,et al.  Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells , 2002 .

[19]  S. Chan,et al.  Polarization effects in electrolyte/electrode-supported solid oxide fuel cells , 2002 .

[20]  R. Datta,et al.  PEM fuel cell as a membrane reactor , 2001 .

[21]  Frano Barbir,et al.  An Analytical Solution of a Half‐Cell Model for PEM Fuel Cells , 2000 .

[22]  Steven Holdcroft,et al.  Temperature and pressure dependence of O2 reduction at Pt | Nafion® 117 and Pt | BAM® 407 interfaces , 1999 .

[23]  Gordon L. Nelson,et al.  Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures , 1998 .

[24]  Philip N. Ross,et al.  TEMPERATURE-DEPENDENT HYDROGEN ELECTROCHEMISTRY ON PLATINUM LOW-INDEX SINGLE-CRYSTAL SURFACES IN ACID SOLUTIONS , 1997 .

[25]  Pierre Millet,et al.  Design and performance of a solid polymer electrolyte water electrolyzer , 1996 .

[26]  M. Rosen Energy and exergy analyses of electrolytic hydrogen production , 1995 .

[27]  Anthony B. LaConti,et al.  Proton-exchange membrane regenerative fuel cells , 1994 .

[28]  M. Rosen,et al.  Exergy analysis of hydrogen production from heat and water by electrolysis , 1992 .

[29]  S. Chan,et al.  Energy and exergy analysis of simple solid-oxide fuel-cell power systems , 2002 .

[30]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[31]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[32]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .