Squared eigenvalue condition numbers and eigenvector correlations from the single ring theorem

We extend the so-called "single ring theorem"[1], also known as the Haagerup-Larsen theorem[2], by showing that in the limit when the size of the matrix goes to infinity a particular correlator between left and right eigenvectors of the relevant non-hermitian matrix $X$, being the spectral density weighted by the squared eigenvalue condition number, is given by a simple formula involving only the radial spectral cumulative distribution function of $X$. We show that this object allows to calculate the conditional expectation of the squared eigenvalue condition number. We give examples and we provide cross-check of the analytic prediction by the large scale numerics.

[1]  Sommers,et al.  Spectrum of large random asymmetric matrices. , 1988, Physical review letters.

[2]  “Single ring theorem” and the disk-annulus phase transition , 2001, cond-mat/0104072.

[3]  Correlations of eigenvectors for non-Hermitian random-matrix models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Random Regularization of Brown Spectral Measure , 2001, math/0105109.

[5]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[6]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[7]  Z. Burda,et al.  Unveiling the significance of eigenvectors in diffusing non-Hermitian matrices by identifying the underlying Burgers dynamics , 2015, 1503.06846.

[8]  Z. Burda,et al.  Spectrum of the product of independent random Gaussian matrices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Spectrum of the fokker-planck operator representing diffusion in a random velocity field , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Maciej A. Nowak,et al.  Random Hermitian versus random non-Hermitian operators—unexpected links , 2006 .

[11]  M. Berry Mode degeneracies and the petermann excess-noise factor for unstable lasers , 2003 .

[12]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[13]  Eigenvalues distribution for products of independent spherical ensembles , 2016 .

[14]  Ofer Zeitouni,et al.  The single ring theorem , 2009, 0909.2214.

[15]  Z. Burda,et al.  Spectral relations between products and powers of isotropic random matrices. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Piotr Sniady,et al.  Eigenvalues of non-hermitian random matrices and Brown measure of non-normal operators: hermitian reduction and linearization method , 2015, 1506.02017.

[17]  O. Zaboronski,et al.  The Ginibre evolution in the large-N limit , 2012, 1212.6949.

[18]  Maciej A. Nowak,et al.  Non-hermitian random matrix models , 1996, cond-mat/9612240.

[19]  Z. Burda,et al.  Dysonian dynamics of the Ginibre ensemble. , 2014, Physical review letters.

[20]  U. Haagerup,et al.  Brown's Spectral Distribution Measure for R-Diagonal Elements in Finite von Neumann Algebras☆ , 2000 .

[21]  Quantum limit of the laser line width in chaotic cavities and statistics of residues of scattering matrix poles , 1999, chao-dyn/9911004.

[22]  Uffe Haagerup,et al.  Brown measures of unbounded operators affiliated with a finite von Neumann algebra , 2006 .

[23]  B. M. Fulk MATH , 1992 .

[24]  On the singular spectrum of powers and products of random matrices , 2010 .

[25]  S. Starr,et al.  A note on mixed matrix moments for the complex Ginibre ensemble , 2014, 1409.4494.

[26]  H. M. Antia Algebraic Eigenvalue Problem , 2012 .

[27]  B. Mehlig,et al.  Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles , 2000 .

[28]  A. Zee,et al.  Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .

[29]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[30]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[31]  C. Beenakker,et al.  Large Petermann factor in chaotic cavities with many scattering channels. , 1999, chao-dyn/9909012.

[32]  Maciej A. Nowak,et al.  Non-Hermitian random matrix models: Free random variable approach , 1997 .

[33]  R. Speicher,et al.  Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .

[34]  Y. Fyodorov,et al.  Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality. , 2012, Physical review letters.

[35]  O. Johnson Free Random Variables , 2004 .

[36]  Ilse C. F. Ipsen,et al.  Perturbation Bounds for Determinants and Characteristic Polynomials , 2008, SIAM J. Matrix Anal. Appl..

[37]  M. Kieburg,et al.  Exact Relation between Singular Value and Eigenvalue Statistics , 2016, 1601.02586.

[38]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[39]  Z. Burda,et al.  Multiplication law and S transform for non-Hermitian random matrices. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  H. Schomerusa,et al.  Quantum limit of the laser line width in chaotic cavities and statistics of residues of scattering matrix poles , 2000 .

[41]  Bent Fuglede,et al.  DETERMINANT THEORY IN FINITE FACTORS , 1952 .

[42]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[43]  A. Zee,et al.  Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  B. Mehlig,et al.  EIGENVECTOR STATISTICS IN NON-HERMITIAN RANDOM MATRIX ENSEMBLES , 1998 .