Non-periodic Tilings of ℝn by Crosses

An n-dimensional cross consists of 2n+1 unit cubes: the “central” cube and reflections in all its faces. A tiling by crosses is called a Z-tiling if each cross is centered at a point with integer coordinates. Periodic tilings of ℝn by crosses have been constructed by several authors for all n∈N. No non-periodic tiling of ℝn by crosses has been found so far. We prove that if 2n+1 is not a prime, then the total number of non-periodic Z-tilings of ℝn by crosses is $2^{\aleph _{0}}$ while the total number of periodic Z-tilings is only ℵ0. In a sharp contrast to this result we show that any two tilings of ℝn,n=2,3, by crosses are congruent. We conjecture that this is the case not only for n=2,3, but for all n where 2n+1 is a prime.

[1]  Jeffrey C. Lagarias,et al.  Keller’s cube-tiling conjecture is false in high dimensions , 1992 .

[2]  Sherman K. Stein,et al.  Algebra and Tiling by Sherman K. Stein , 2009 .

[3]  Simon Špacapan,et al.  Nonexistence of face-to-face four-dimensional tilings in the Lee metric , 2007, Eur. J. Comb..

[4]  H. Minkowski,et al.  Diophantische Approximationen : eine Einführung in die Zahlentheorie , 1907 .

[5]  P. Horak Tilings in Lee metric , 2009, Eur. J. Comb..

[6]  S. Szabó On mosaics consisting of multidimensional crosses , 1981 .

[7]  P. Horak On perfect Lee codes , 2009, Discret. Math..

[8]  Sherman K. Stein Factoring by subsets , 1967 .

[9]  Mackey A Cube Tiling of Dimension Eight with No Facesharing , 2002 .

[10]  Werner Ulrich,et al.  Non-binary error correction codes , 1957 .

[11]  O. Perron,et al.  Modulartige lückenlose Ausfüllung desRn mit kongruenten Würfeln. I , 1940 .

[12]  Sylvain Gravier,et al.  On the nonexistence of three-dimensional tiling in the Lee metric II , 2001, Discret. Math..

[13]  O. Keller,et al.  Über die lückenlose Erfüllung des Raumes mit Würfeln. , 1930 .

[14]  Sylvain Gravier,et al.  On the Non-existence of 3-Dimensional Tiling in the Lee Metric , 1998, Eur. J. Comb..

[15]  Ladislaus Rédei Neuer Beweis des Hamjósschen Satzes über die endlichen Abelschen Gruppen , 1955 .

[16]  Georg Hajós,et al.  Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .

[17]  Karel A. Post Nonexistence Theorems on Perfect Lee Codes over Large Alphabets , 1975, Inf. Control..

[18]  Lorenzo Milazzo,et al.  Enumerating and decoding perfect linear Lee codes , 2009, Des. Codes Cryptogr..

[19]  Oskar Perron Modulartige lückenlose Ausfüllung desRn mit kongruenten Würfeln. II , 1940 .

[20]  Tuvi Etzion,et al.  Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.

[21]  Michael A. Langston,et al.  A complete resolution of the Keller maximum clique problem , 2011, SODA '11.

[22]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .