Recent Progress in Thermochromics and Electrochromics: A Brief Survey

Contemporary architecture is characterized by large glazings, which are able to accomplish good indoors-outdoors contact and daylighting. However, glazings, encompassing windows and glass facades, ...

[1]  M. Pittaluga,et al.  Electrochromic glazing and walls for reducing building cooling needs , 2015 .

[2]  C. Granqvist,et al.  Anodic Electrochromism for Energy‐Efficient Windows: Cation/Anion‐Based Surface Processes and Effects of Crystal Facets in Nickel Oxide Thin Films , 2015 .

[3]  C. Granqvist,et al.  Galvanostatic Ion Detrapping Rejuvenates Oxide Thin Films. , 2015, ACS applied materials & interfaces.

[4]  John M. Quigley,et al.  PROGRAM ON HOUSING AND URBAN POLICY , 1904 .

[5]  C. Granqvist,et al.  Electrochromism in sputter-deposited W–Ti oxide films: Durability enhancement due to Ti , 2014 .

[6]  Louis Gosselin,et al.  Integration of smart windows into building design for reduction of yearly overall energy consumption and peak loads , 2012 .

[7]  C. Lampert,et al.  Electrochromic materials and devices for energy-efficient windows. [161 references] , 1984 .

[8]  Michael E. A. Warwick,et al.  Advances in thermochromic vanadium dioxide films , 2014 .

[9]  Bjørn Petter Jelle,et al.  Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings-Measurement and calculation , 2013 .

[10]  Emma Jonson,et al.  The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil , 2010 .

[11]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[12]  Göran Lindbergh,et al.  Methodology for measuring current distribution effects in electrochromic smart windows. , 2011, Applied optics.

[13]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .

[14]  Claes-Göran Granqvist,et al.  Nanothermochromics with VO2-based core-shell structures: Calculated luminous and solar optical properties , 2011 .

[15]  Emma Jonson,et al.  Electrochromic foil-based devices : Optical transmittance and modulation range, effect of ultraviolet irradiation, and quality assessment by 1/f current noise , 2008 .

[16]  C. Granqvist Oxide electrochromics: An introduction to devices and materials , 2012 .

[17]  Nicholas D M Hine,et al.  Vanadium dioxide: a Peierls-Mott insulator stable against disorder. , 2012, Physical review letters.

[18]  C. Granqvist Electrochromics for smart windows: Oxide-based thin films and devices , 2014 .

[19]  Ilknur Bayrak Pehlivan,et al.  Electrochromic devices with polymer electrolytes functionalized by SiO2 and In2O3:Sn nanoparticles: Rapid coloring/bleaching dynamics and strong near-infrared absorption , 2014 .

[20]  Claes-Göran Granqvist,et al.  Nanothermochromics: Calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation , 2010 .

[21]  Andris Azens,et al.  Electrochromic devices embodying W oxide/Ni oxide tandem films , 2001 .

[22]  H. Wriedt,et al.  The O-V (Oxygen-Vanadium) system , 1989 .

[23]  Rui-Tao Wen,et al.  Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films , 2015, Nature materials.

[24]  Stephen Selkowitz,et al.  Daylighting control performance of a thin-film ceramic electrochromic window : Field study results , 2006 .

[25]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[26]  C. Granqvist,et al.  Advances in chromogenic materials and devices , 2010 .

[27]  Martin Becker,et al.  Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2 , 2015 .

[28]  J. C. Lee,et al.  Doped vanadium oxide for optical switching films , 1986 .

[29]  Chaiwat Engtrakul,et al.  Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. , 2013, ACS applied materials & interfaces.

[30]  Andris Azens,et al.  Ozone coloration of Ni and Cr oxide films , 2003 .

[31]  Zongtao Zhang,et al.  Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing , 2012 .

[32]  Claes-Göran Granqvist,et al.  Optical properties of Mg-doped VO2: Absorption measurements and hybrid functional calculations , 2012 .

[33]  T. E. Haynes,et al.  Temperature-controlled surface plasmon resonance in VO (2) nanorods. , 2002, Optics letters.

[34]  Michael E. A. Warwick,et al.  Fluorine doped vanadium dioxide thin films for smart windows , 2011 .

[35]  Shuyi Li,et al.  Sputter deposition of thermochromic VO2 films on In2O3:Sn, SnO2, and glass: Structure and composition versus oxygen partial pressure , 2015 .

[36]  Claes-Göran Granqvist,et al.  Durability of VO2-based thin films at elevated temperature: Towards thermochromic fenestration , 2014 .

[37]  Michele Zinzi,et al.  Office worker preferences of electrochromic windows: a pilot study , 2006 .

[38]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[39]  Claes-Göran Granqvist,et al.  Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature , 2009 .

[40]  Sabine Hoffmann,et al.  Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications , 2014 .

[41]  Bruno K. Meyer,et al.  Tungsten and fluorine co-doping of VO2 films , 2002 .

[42]  Ioannis Papakonstantinou,et al.  A bioinspired solution for spectrally selective thermochromic VO2 coated intelligent glazing. , 2013, Optics express.

[43]  Eleanor S. Lee,et al.  End user impacts of automated electrochromic windows in a pilot retrofit application , 2012 .

[44]  Ivan P. Parkin,et al.  Nano-composite thermochromic thin films and their application in energy-efficient glazing , 2010 .

[45]  Gunnar A. Niklasson,et al.  Thermochromic VO2‐based multilayer films with enhanced luminous transmittance and solar modulation , 2009 .

[46]  C. Granqvist,et al.  Electrochromic smart windows: energy efficiency and device aspects , 2003, Renewable Energy.

[47]  C. Granqvist,et al.  Chromogenic materials for transmittance control of large-area windows , 1990 .

[48]  Arild Gustavsen,et al.  Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities , 2013 .

[49]  S. K. Deb,et al.  An UV photochromic memory effect in proton-based WO3 electrochromic devices , 2008 .

[50]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[51]  Ping Jin,et al.  Improved luminous transmittance and diminished yellow color in VO2 energy efficient smart thin films by Zn doping , 2014 .

[52]  D. Kammen,et al.  How America can look within to achieve energy security and reduce global warming , 2008 .

[53]  Claes-Göran Granqvist,et al.  Electrochromics for energy efficient buildings: Towards long-term durability and materials rejuvenation , 2016 .

[54]  Guoqiang Tan,et al.  VO2-based double-layered films for smart windows: Optical design, all-solution preparation and improved properties , 2011 .

[55]  D. Sholl,et al.  Selection of dopants to enhance hydrogen diffusion rates in MgH2 and NaMgH3 , 2009 .

[56]  C. Granqvist,et al.  Anodic Electrochromic Nickel Oxide Thin Films: Decay of Charge Density upon Extensive Electrochemical Cycling , 2016 .

[57]  Claes-Göran Granqvist,et al.  Electrochromism and small-polaron hopping in oxygen deficient and lithium intercalated amorphous tungsten oxide films , 2015 .

[58]  Claes G. Granqvist,et al.  Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment, by G. B. Smith and C. G. Granqvist , 2010 .

[59]  C. Granqvist,et al.  Electrochromic Iridium-Containing Nickel Oxide Films with Excellent Electrochemical Cycling Performance , 2016 .

[60]  Johannes Svensson,et al.  Electrochromic tungsten oxide films for energy efficient windows , 1984 .

[61]  Gunnar A. Niklasson,et al.  Thermochromic VO2 Films for Energy-Efficient Windows , 1987, Optics & Photonics.

[62]  C. Granqvist,et al.  Sustainable Rejuvenation of Electrochromic WO3 Films. , 2015, ACS applied materials & interfaces.

[63]  C. M. Lampert,et al.  Large-area chromogenics: Materials and devices for transmittance control. Volume IS 4 , 1990 .

[64]  C. Granqvist,et al.  Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films. , 2015, ACS applied materials & interfaces.

[65]  Adélio Rodrigues Gaspar,et al.  Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates , 2014 .

[66]  Claes-Göran Granqvist,et al.  Oxide-based chromogenic coatings and devices for energy efficient fenestration: Brief survey and update on thermochromics and electrochromics , 2014 .

[67]  Shriram Ramanathan,et al.  Metastable oxygen incorporation into thin film NiO by low temperature active oxidation: Influence on hole conduction , 2010 .

[68]  Claes-Göran Granqvist,et al.  Thermochromic VO2 nanorods made by sputter deposition: Growth conditions and optical modeling , 2013 .

[69]  C. Granqvist,et al.  Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met , 2012 .

[70]  Ivan P. Parkin,et al.  Energy modelling studies of thermochromic glazing , 2010 .

[71]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[72]  Gunnar A. Niklasson,et al.  Thermochromic light scattering from particulate VO2 layers , 2016 .

[73]  Eleanor S. Lee,et al.  Subject Responses to Electrochromic Windows , 2006 .

[74]  Shuyi Li,et al.  Bandgap widening in thermochromic Mg-doped VO2 thin films: Quantitative data based on optical absorption , 2013 .

[75]  Ping Jin,et al.  Fabrication of VO2 nanorods/PVP composite fiber mats and their unique optical diffuse reflectance properties , 2014 .

[76]  Claes-Göran Granqvist,et al.  Electrochromics and Thermochromics: Towards a New Paradigm for Energy Efficient Buildings , 2014 .

[77]  Claes-Goeran Granqvist,et al.  Thermochromic sputter‐deposited vanadium oxyfluoride coatings with low luminous absorptance , 1989 .

[78]  Claes-Göran Granqvist,et al.  Durability of thermochromic VO2 thin films under heating and humidity: Effect of Al oxide top coatings , 2014 .

[79]  Claes-Göran Granqvist,et al.  Nanoparticles of TiO2 and VO2 in dielectric media: Conditions for low optical scattering, and comparison between effective medium and four-flux theories , 2014 .

[80]  Claes-Göran Granqvist,et al.  Thermochromic undoped and Mg-doped VO2 thin films and nanoparticles: Optical properties and performance limits for energy efficient windows , 2014 .

[81]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .