Interpolatory point set surfaces—convexity and Hermite data

Point set surfaces define a (typically) manifold surface from a set of scattered points. The definition involves weighted centroids and a gradient field. The data points are interpolated if singular weight functions are used to define the centroids. While this way of deriving an interpolatory scheme appears natural, we show that it has two deficiencies: Convexity of the input is not preserved and the extension to Hermite data is numerically unstable. We present a generalization of the standard scheme that we call Hermite point set surface. It allows interpolating, given normal constraints in a stable way. It also yields an intuitive parameter for shape control and preserves convexity in most situations. The analysis of derivatives also leads to a more natural way to define normals, in case they are not supplied with the point data. We conclude by comparing to similar surface definitions.

[1]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[2]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[3]  Marie-Paule Cani,et al.  Eurographics , 1999 .

[4]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2000, SCG '00.

[5]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[6]  M. Gross,et al.  Shape modeling with point-sampled geometry , 2003 .

[7]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[8]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[9]  Marc Alexa,et al.  Approximating Bounded, Non-Orientable Surfaces from Points (Figures 5, 6, and 7) , 2004, SMI.

[10]  Leif Kobbelt,et al.  A survey of point-based techniques in computer graphics , 2004, Comput. Graph..

[11]  Nina Amenta,et al.  Defining point-set surfaces , 2004, ACM Trans. Graph..

[12]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[13]  A. Adamson,et al.  Approximating bounded, nonorientable surfaces from points , 2004, Proceedings Shape Modeling Applications, 2004..

[14]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[15]  N. Amenta,et al.  Defining point-set surfaces , 2004, SIGGRAPH 2004.

[16]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2004, SIGGRAPH Courses.

[17]  Nina Amenta,et al.  The Domain of a Point Set Surface , 2004, PBG.

[18]  Marc Alexa,et al.  On Normals and Projection Operators for Surfaces Defined by Point Sets , 2004, PBG.

[19]  Hans-Peter Seidel,et al.  Interactive ray tracing of point-based models , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[20]  T. Dey,et al.  Extremal Surface Based Projections Converge and Reconstruct with Isotopy , 2005 .

[21]  Tamal K. Dey,et al.  An Adaptive MLS Surface for Reconstruction with Guarantees , 2022 .

[22]  John C. Hart,et al.  A sampling theorem for MLS surfaces , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[23]  Ravi Krishna Kolluri,et al.  Provably good moving least squares , 2005, SIGGRAPH Courses.

[24]  Hans-Peter Seidel,et al.  Interactive ray tracing of point-based models , 2005, Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005..

[25]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2005, SIGGRAPH Courses.

[26]  Marc Alexa,et al.  Point-sampled cell complexes , 2006, ACM Trans. Graph..