Divisibility Properties of Integer Sequences
暂无分享,去创建一个
[1] A. Granville. Classifying linear division sequences , 2022, 2206.11823.
[2] Johann Cigler,et al. Pascal triangle, Hoggatt matrices, and analogous constructions , 2021, 2103.01652.
[3] Christian Ballot,et al. The Congruence of Wolstenholme for Generalized Binomial Coefficients Related to Lucas Sequences , 2014, J. Integer Seq..
[4] Maciej Dziemianczuk,et al. On GCD-morphic sequences , 2008, ArXiv.
[5] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[6] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[7] M. Ward. Prime divisors of second order recurring sequences , 1954 .
[8] Morgan Ward,et al. A note on divisibility sequences , 1936 .
[9] Marshall Hall,et al. Divisibility Sequences of Third Order , 1936 .
[10] Morgan Ward,et al. A Calculus of Sequences , 1936 .
[11] Nicholas A. Loehr,et al. Generalizing the Combinatorics of Binomial Coefficients via -Nomials , 2010, Integers.
[12] P. Horák. A CHARACTERIZATION OF THE SECOND-ORDER STRONG DIVISIBILITY SEQUENCES , 2010 .
[13] C.,et al. ON A CONJECTURE BY HOGGATT WITH EXTENSIONS TO HOGGATT SUMS AND HOGGATT TRIANGLES , 1989 .
[14] Donald E. Knuth,et al. The power of a prime that divides a generalized binomial coefficient. , 1989 .
[15] C. Kimberling. Strong divisibility sequences and some conjectures , 1979 .
[16] C. Kimberling. STRONG DIVISIBILITY SEQUENCES WITH NONZERO INITIAL TERM , 1978 .
[17] Karl J. Smith. Pascal's Triangle. , 1973 .
[18] R. D. Carmichael,et al. On the Numerical Factors of the Arithmetic Forms α n ± β n , 1913 .
[19] E. Netto,et al. Lehrbuch der Combinatorik , 1902 .