Divisibility Properties of Integer Sequences

A sequence of nonzero integers $f = (f_1, f_2, \dots)$ is ``binomid'' if every $f$-binomid coefficient $\left[\! \begin{array}{c} n \\ k \end{array}\! \right]_f$ is an integer. Those terms are the generalized binomial coefficients: \[ \left[\! \begin{array}{c} n \\ k \end{array}\! \right]_f \ = \ \frac{ f_nf_{n-1}\cdots f_{n-k+1} }{ f_kf_{k-1}\cdots f_1 }. \] Let $\Delta(f)$ be the infinite triangle with those numbers as entries. When $I = (1, 2, 3, \dots)$ then $\Delta(I)$ is Pascal's Triangle so that $I$ is binomid. Surprisingly, every row and column of Pascal's Triangle is also binomid. For any $f$, each row and column of $\Delta(f)$ generates its own triangle and all those triangles fit together to form the ``Binomid Pyramid'' $\mathbb{BP}(f)$. Sequence $f$ is ``binomid at every level'' if all entries of $\mathbb{BP}(f)$ are integers. We prove that several familiar sequences have that property, including the Lucas sequences. In particular, $I = (1, 2, 3, \dots )$, the sequence of Fibonacci numbers, and $(2^n - 1)_{n \ge 1}$ are binomid at every level.

[1]  A. Granville Classifying linear division sequences , 2022, 2206.11823.

[2]  Johann Cigler,et al.  Pascal triangle, Hoggatt matrices, and analogous constructions , 2021, 2103.01652.

[3]  Christian Ballot,et al.  The Congruence of Wolstenholme for Generalized Binomial Coefficients Related to Lucas Sequences , 2014, J. Integer Seq..

[4]  Maciej Dziemianczuk,et al.  On GCD-morphic sequences , 2008, ArXiv.

[5]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[6]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[7]  M. Ward Prime divisors of second order recurring sequences , 1954 .

[8]  Morgan Ward,et al.  A note on divisibility sequences , 1936 .

[9]  Marshall Hall,et al.  Divisibility Sequences of Third Order , 1936 .

[10]  Morgan Ward,et al.  A Calculus of Sequences , 1936 .

[11]  Nicholas A. Loehr,et al.  Generalizing the Combinatorics of Binomial Coefficients via -Nomials , 2010, Integers.

[12]  P. Horák A CHARACTERIZATION OF THE SECOND-ORDER STRONG DIVISIBILITY SEQUENCES , 2010 .

[13]  C.,et al.  ON A CONJECTURE BY HOGGATT WITH EXTENSIONS TO HOGGATT SUMS AND HOGGATT TRIANGLES , 1989 .

[14]  Donald E. Knuth,et al.  The power of a prime that divides a generalized binomial coefficient. , 1989 .

[15]  C. Kimberling Strong divisibility sequences and some conjectures , 1979 .

[16]  C. Kimberling STRONG DIVISIBILITY SEQUENCES WITH NONZERO INITIAL TERM , 1978 .

[17]  Karl J. Smith Pascal's Triangle. , 1973 .

[18]  R. D. Carmichael,et al.  On the Numerical Factors of the Arithmetic Forms α n ± β n , 1913 .

[19]  E. Netto,et al.  Lehrbuch der Combinatorik , 1902 .