Neutral Bremsstrahlung Emission in Xenon Unveiled

We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White TPC and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that has been postulated to exist in xenon that has been largely overlooked. For photon emission below 1000 nm, the NBrS yield increases from about 10 − 2 photon/e − cm − 1 bar − 1 at pressure-reduced electric field values of 50 V cm − 1 bar − 1 to above 3 × 10 − 1 photon/e − cm − 1 bar − 1 at 500 V cm − 1 bar − 1 . Above 1.5 kV cm − 1 bar − 1 , values that are typically employed for electroluminescence, it is estimated that NBrS is present with an intensity around 1 photon/e − cm − 1 bar − 1 , which is about two orders of magnitude lower than conventional, excimer-based electroluminescence. Despite being fainter than its excimeric counterpart, our calculations reveal that NBrS causes luminous backgrounds that can interfere, in either gas or liquid phase, with the ability to distinguish and/or to precisely measure low primary-scintillation signals (S1). In particular, we show this to be the case in the “buffer” region, where keeping the electric field below the electroluminescence (EL) threshold will not suffice to extinguish secondary scintillation. The electric field leakage in this region should be mitigated to avoid intolerable levels of NBrS emission. Furthermore, we show that this new source of light emission opens up a viable path towards obtaining S2 signals for discrimination purposes in future single-phase liquid TPCs for neutrino and dark matter physics, with estimated yields up to 20-50 photons/e − cm − 1 .

A. Goldschmidt | B. Jones | D. Nygren | L. Labarga | M. Losada | M. Diesburg | J. Hauptman | P. Lebrun | J. Repond | R. Guenette | J. Generowicz | A. Laing | P. Ferrario | F. Ballester | P. Novella | N. Lopez-march | S. Cebrián | J. Gomez-Cadenas | C. Sofka | T. Stiegler | J. White | R. Weiss-Babai | N. Byrnes | L. Rogers | A. Para | M. Kekic | V. Herrero | R. Esteve | R. Gutiérrez | J. Martín-Albo | P. Amedo | K. Woodruff | F. Borges | C. Conde | L. Fernandes | E. Freitas | F. Monrabal | C. Monteiro | F. Mora | J. Renner | L. Ripoll | F. Santos | M. Sorel | J. Toledo | J. Torrent | J. Veloso | N. Yahlali | V. Álvarez | C. Azevedo | C. Henriques | M. Querol | J. D. dos Santos | I. Arnquist | J. Hernando Morata | J. Haefner | L. Arazi | A. Fernandes | R. Mano | S. Riordan | D. González-Díaz | K. Hafidi | E. Church | C. Adams | K. Bailey | T. Contreras | J. Escada | R. Felkai | Y. Ifergan | B. Palmeiro | A. Redwine | B. Romeo | C. Romo-Luque | J. Teixeira | J. Pérez | G. Martínez-Lema | A. Simón | P. Herrero | J. M. Benlloch-Rodŕıguez | S. Cárcel | J. Carrión | J. Rodŕıguez | M. Martínez-Vara | Á. Saá Hernández | G. Díaz | J. Díaz | A. Ferreira | S. Ghosh | S. Johnston | A. Martínez | A. McDonald | J. Muñoz Vidal | Y. Rodríguez García | A. Usón | R. Webb | F. Borges | N. López-March | A. L. Ferreira | A. Mart́ınez | G. D́ıaz | J. D́ıaz | J. Gómez-Cadenas | A. Mart́ınez | Y. Rodriguez Garcia | S. Ghosh | J. Carríon | F. Santos | Y. Rodríguez García

[1]  D. Muenstermann,et al.  Development of very-thick transparent GEMs with wavelength-shifting capability for noble element TPCs , 2021, The European Physical Journal C.

[2]  M. G. Bisogni,et al.  SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range , 2020, The European Physical Journal C.

[3]  X. Ji,et al.  On proportional scintillation in very large liquid xenon detectors , 2020, Nuclear Science and Techniques.

[4]  A. Buzulutskov Electroluminescence and Electron Avalanching in Two-Phase Detectors , 2020, Instruments.

[5]  A. Bondar,et al.  Effect of Neutral Bremsstrahlung on the Operation of Two-Phase Argon Detectors , 2020, Bulletin of the Lebedev Physics Institute.

[6]  F. Carnesecchi Light detection in DarkSide-20k , 2020, Journal of Instrumentation.

[7]  Kiwamu Saito,et al.  Scintillation and ionization yields of helium–xenon gas mixture for application in neutron detectors , 2020, Japanese Journal of Applied Physics.

[8]  V. C. Antochi,et al.  Energy resolution and linearity in the keV to MeV range measured in XENON1T , 2020, 2003.03825.

[9]  K. Yorita,et al.  Study of luminescence mechanism by neutral bremsstrahlung in gaseous argon , 2020, Journal of Instrumentation.

[10]  D. Gonzalez-Diaz,et al.  Electron transport in gaseous detectors with a Python-based Monte Carlo simulation code , 2019, Comput. Phys. Commun..

[11]  Y. Iwashita,et al.  AXEL: High-pressure Xe gas TPC for BG-free 0ν2β decay search , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[12]  S. Burdin,et al.  Extending light WIMP searches to single scintillation photons in LUX , 2019, Physical Review D.

[13]  D. Gonz'alez-D'iaz,et al.  A new amplification structure for time projection chambers based on electroluminescence , 2019, Journal of Physics: Conference Series.

[14]  R. Webb,et al.  Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield , 2019, Journal of High Energy Physics.

[15]  A. Bondar,et al.  Neutral bremsstrahlung in two-phase argon electroluminescence: further studies and possible applications , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[16]  J. P. Rodrigues,et al.  Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment , 2018, Physical Review D.

[17]  M. Tripathi,et al.  Low-Energy Physics Reach of Xenon Detectors for Nuclear-Recoil-Based Dark Matter and Neutrino Experiments. , 2019, Physical review letters.

[18]  K. Giboni,et al.  Searching for neutrino-less double beta decay of 136Xe with PandaX-II liquid xenon detector , 2019, Chinese Physics C.

[19]  A. K. Soma,et al.  Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.

[20]  R. Webb,et al.  Radiogenic backgrounds in the NEXT double beta decay experiment , 2019, Journal of High Energy Physics.

[21]  R. Webb,et al.  Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe , 2019, Journal of High Energy Physics.

[22]  R. Webb,et al.  Demonstration of the event identification capabilities of the NEXT-White detector , 2019, Journal of High Energy Physics.

[23]  C. Henriques Studies of xenon mixtures with molecular additives for the NEXT electroluminescence TPC , 2019 .

[24]  V. C. Antochi,et al.  Observation of two-neutrino double electron capture in 124Xe with XENON1T , 2019, Nature.

[25]  P. Ferrario,et al.  High Pressure Gas Xenon TPCs for Double Beta Decay Searches , 2019, Front. Phys..

[26]  R. Webb,et al.  Electroluminescence TPCs at the thermal diffusion limit , 2018, Journal of High Energy Physics.

[27]  XENON1T collaboration Observation of two-neutrino double electron capture in 124Xe with XENON1T , 2019 .

[28]  F. Gao,et al.  Simultaneous measurement of the light and charge response of liquid xenon to low-energy nuclear recoils at multiple electric fields , 2018, Physical Review D.

[29]  L. Baudis,et al.  Characterisation of Silicon Photomultipliers for liquid xenon detectors , 2018, Journal of Instrumentation.

[30]  B. J. P. Jones,et al.  The NEXT White (NEW) detector , 2018, Journal of Instrumentation.

[31]  R. Webb,et al.  Calibration of the NEXT-White detector using 83mKr decays , 2018, Journal of Instrumentation.

[32]  J. T. White,et al.  Measurement of radon-induced backgrounds in the NEXT double beta decay experiment , 2018, Journal of High Energy Physics.

[33]  A. Colijn,et al.  Precision measurements of the scintillation pulse shape for low-energy recoils in liquid xenon , 2018, 1803.07935.

[34]  A. V. Sokolov,et al.  Revealing neutral bremsstrahlung in two-phase argon electroluminescence , 2018, Astroparticle Physics.

[35]  M. Tripathi,et al.  Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector , 2018, Physical Review D.

[36]  Hao Qiao,et al.  Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation , 2018, Science China Physics, Mechanics & Astronomy.

[37]  F. V. Massoli,et al.  Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon , 2017, 1709.10149.

[38]  L. M. Moutinho,et al.  Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection , 2017 .

[39]  M. Xiao,et al.  Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. , 2017, Physical review letters.

[40]  L. M. Moutinho,et al.  Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives , 2017, 1705.09481.

[41]  A. Buzulutskov Photon emission and atomic collision processes in two-phase argon doped with xenon and nitrogen , 2017, 1702.03612.

[42]  S. Parlati,et al.  The XENON1T dark matter experiment , 2017, The European Physical Journal C.

[43]  S.Ban,et al.  Electroluminescence collection cell as a readout for a high energy resolution Xenon gas TPC , 2017, 1701.03931.

[44]  F. V. Massoli,et al.  DARWIN: towards the ultimate dark matter detector , 2016, 1606.07001.

[45]  M. Brunger,et al.  Ab initio electron scattering cross-sections and transport in liquid xenon , 2016, 1603.04157.

[46]  L. M. Moutinho,et al.  Sensitivity of NEXT-100 to neutrinoless double beta decay , 2015, 1511.09246.

[47]  Kiwamu Saito,et al.  High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region , 2015 .

[48]  M. A. Cortés-Giraldo,et al.  Recent developments in GEANT4 , 2015 .

[49]  V. Gehman,et al.  Measurements of wavelength-dependent double photoelectron emission from single photons in VUV-sensitive photomultiplier tubes , 2015, 1506.08748.

[50]  A. Goldschmidt,et al.  Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches , 2015, 1505.03585.

[51]  Fei Gao,et al.  Scintillation and ionization responses of liquid xenon to low energy electronic and nuclear recoils at drift fields from 236 V/cm to 3.93 kV/cm , 2015, 1505.00517.

[52]  Kari Tammi,et al.  Efficient Parallel 3-D Computation of Electrical Machines With Elmer , 2015, IEEE Transactions on Magnetics.

[53]  L. M. Moutinho,et al.  Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm , 2015, 1504.03678.

[54]  A. Para,et al.  Dark matter directionality revisited with a high pressure xenon gas detector , 2015, 1503.03937.

[55]  L. M. Moutinho,et al.  Ionization and scintillation of nuclear recoils in gaseous xenon , 2014, 1409.2853.

[56]  L. M. Moutinho,et al.  An improved measurement of electron-ion recombination in high-pressure xenon gas , 2014, 1412.3573.

[57]  T. Ye,et al.  Initial evaluation of proportional scintillation in liquid Xenon for direct dark matter detection , 2014 .

[58]  J. Naganoma,et al.  Measurements of proportional scintillation and electron multiplication in liquid xenon using thin wires , 2014, 1408.6206.

[59]  M. Auger,et al.  Improved measurement of the 2νββ half-life of 136 Xe with the EXO-200 detector , 2014 .

[60]  S. Wu,et al.  Evidence of electric breakdown induced by bubbles in liquid argon , 2014, 1401.2777.

[61]  F. V. Massoli,et al.  Observation and applications of single-electron charge signals in the XENON100 experiment , 2013, 1311.1088.

[62]  L. M. Moutinho,et al.  Ionization and scintillation response of high-pressure xenon gas to alpha particles , 2012, 1211.4508.

[63]  J Rodríguez,et al.  Ionization and scintillation response of high-pressure xenon gas to alpha particles , 2013 .

[64]  L. Fernandes,et al.  Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search , 2012 .

[65]  H. Ara'ujo,et al.  Liquid noble gas detectors for low energy particle physics , 2012, 1207.2292.

[66]  M. Decowski,et al.  Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment , 2012 .

[67]  W. Marsden I and J , 2012 .

[68]  M. Hoshino,et al.  High-resolution total-cross-section measurements for electron scattering from Ar, Kr, and Xe employing a threshold-photoelectron source , 2011 .

[69]  R. Veenhof,et al.  A simulation toolkit for electroluminescence assessment in rare event experiments , 2011, 1103.6237.

[70]  I. Giomataris,et al.  Micromegas operation in high pressure xenon: charge and scintillation readout , 2010, 1009.2960.

[71]  T. Lux,et al.  Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0νββ) search , 2010 .

[72]  E. Aprile,et al.  Liquid Xenon Detectors for Particle Physics and Astrophysics , 2009, 0910.4956.

[73]  N. Hasebe,et al.  Average Numbers of Scintillation Photons and Electrons Produced by an Alpha Particle in High-Density Xenon Gas , 2009 .

[74]  A. Breskin,et al.  Secondary scintillation yield from gaseous micropattern electron multipliers in direct Dark Matter detection , 2009 .

[75]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[76]  J. Lopes,et al.  Secondary scintillation yield in pure argon , 2008 .

[77]  S. D. do Carmo,et al.  Experimental Study of the $w$-Values and Fano Factors of Gaseous Xenon and Ar-Xe Mixtures for X-Rays , 2008, IEEE Transactions on Nuclear Science.

[78]  E. G. Myers,et al.  Mass and double-beta-decay Q value of Xe-136 , 2007 .

[79]  Kiwamu Saito,et al.  Simultaneous measurements of absolute numbers of electrons and scintillation photons produced by 5.49 MeV alpha particles in rare gases , 2003 .

[80]  C. Conde,et al.  Development of portable gas proportional scintillation counters for x-ray spectrometry , 2001 .

[81]  Jaeyoung Park,et al.  Neutral bremsstrahlung measurement in an atmospheric-pressure radio frequency discharge , 2000 .

[82]  S. F. Biagi,et al.  MONTE CARLO SIMULATION OF ELECTRON DRIFT AND DIFFUSION IN COUNTING GASES UNDER THE INFLUENCE OF ELECTRIC AND MAGNETIC FIELDS , 1999 .

[83]  B. Sadoulet,et al.  High Pressure Gas Scintillation Drift Chambers With Wave-Shifter Readout , 1989, Optics & Photonics.

[84]  Bernard Sadoulet,et al.  High pressure gas scintillation drift chambers with wave-shifter fiber readout , 1989 .

[85]  P. Laporte,et al.  Pressure effects on kinetics and decay processes in xenon after selective photoexcitation , 1988 .

[86]  S. Kubota,et al.  Emission spectra from ArXe, ArKr, ArN2, ArCH4, ArCO2 and XeN2 gas scintillation proportional counters , 1983 .

[87]  M. Golde,et al.  Formation of electronically excited oxygen atoms in the reactions of argon(3P0,2) and xenon(3P2) atoms with oxygen molecules , 1982 .

[88]  S. Kubota,et al.  Liquid and solid argon, krypton and xenon scintillators , 1982 .

[89]  J. Galy,et al.  Energy transfer kinetics of the VUV emissions for Kr–Xe mixtures , 1981 .

[90]  S. Kubota,et al.  Mechanism of proportional scintillation in argon, krypton and xenon , 1979 .

[91]  J. Velazco,et al.  Rate constants and quenching mechanisms for the metastable states of argon, krypton, and xenon , 1978 .

[92]  T. Mast,et al.  ELECTRON AVALANCHE IN LIQUID XENON , 1974 .

[93]  R. R. Johnston Free-free radiative transitions—A survey of theoretical results , 1967 .

[94]  A.J.P.L. Policarpo,et al.  A gas proportional scintillation counter , 1967 .

[95]  A. Policarpo,et al.  The argon-nitrogen proportional scintillation counter , 1967 .

[96]  A. Dalgarno,et al.  Free-Free Transitions of Electrons in Gases , 1966 .

[97]  S. Geltman Continuum States of H- and the Free-Free Absorption Coefficient , 1965 .

[98]  H. Ohmura,et al.  Continuous Absorption Due to Free-Free Transitions in Hydrogen , 1961 .

[99]  F. Low Bremsstrahlung of very low-energy quanta in elementary particle collisions , 1958 .