Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation.

[1]  C. Masters,et al.  Dimeric structures of alpha-synuclein bind preferentially to lipid membranes. , 2008, Biochimica et biophysica acta.

[2]  A. C. Belin,et al.  Parkinson’s disease: A genetic perspective , 2008, The FEBS journal.

[3]  R. Cappai,et al.  Delineating the Mechanism of Alzheimer’s Disease Aβ Peptide Neurotoxicity , 2008, Neurochemical Research.

[4]  N. Brot,et al.  Methionine Sulfoxide Reductase A and a Dietary Supplement S-Methyl-L-Cysteine Prevent Parkinson's-Like Symptoms , 2007, The Journal of Neuroscience.

[5]  H. Ischiropoulos,et al.  Cellular Oligomerization of α-Synuclein Is Determined by the Interaction of Oxidized Catechols with a C-terminal Sequence* , 2007, Journal of Biological Chemistry.

[6]  S. Bottomley,et al.  Dopamine promotes α‐synuclein aggregation into SDS‐resistant soluble oligomers via a distinct folding pathway , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  Jun Hu,et al.  Inhibition of α‐synuclein fibrillization by dopamine analogs via reaction with the amino groups of α‐synuclein , 2005 .

[8]  J. Trojanowski,et al.  Reversible Inhibition of α-Synuclein Fibrillization by Dopaminochrome-mediated Conformational Alterations* , 2005, Journal of Biological Chemistry.

[9]  Jochen Klucken,et al.  Hsp70 Reduces α-Synuclein Aggregation and Toxicity* , 2004, Journal of Biological Chemistry.

[10]  Jie Li,et al.  Dopamine and L‐dopa disaggregate amyloid fibrils: implications for Parkinson's and Alzheimer's disease , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  V. Uversky,et al.  Role of individual methionines in the fibrillation of methionine-oxidized α-synuclein , 2004 .

[12]  C. Masters,et al.  Structure of the Alzheimer's Disease Amyloid Precursor Protein Copper Binding Domain , 2003, The Journal of Biological Chemistry.

[13]  Carl W. Cotman,et al.  Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis , 2003, Science.

[14]  Patrik Brundin,et al.  Pathogenesis of parkinson's disease: dopamine, vesicles and α-synuclein , 2002, Nature Reviews Neuroscience.

[15]  Bruce A. Yankner,et al.  Dopamine-dependent neurotoxicity of α-synuclein: A mechanism for selective neurodegeneration in Parkinson disease , 2002, Nature Medicine.

[16]  V. Uversky,et al.  Methionine oxidation inhibits fibrillation of human α‐synuclein in vitro , 2002 .

[17]  D. Sulzer α-synuclein and cytosolic dopamine: Stabilizing a bad situation , 2001, Nature Medicine.

[18]  Peter T. Lansbury,et al.  Kinetic Stabilization of the α-Synuclein Protofibril by a Dopamine-α-Synuclein Adduct , 2001, Science.

[19]  A. Goldberg,et al.  PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone , 2000, Nature Cell Biology.

[20]  Sarah J. Tabrizi,et al.  Expression of mutant α-synuclein causes increased susceptibility to dopamine toxicity , 2000 .

[21]  P. Lansbury,et al.  Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson’s disease? , 2000, Nature Cell Biology.

[22]  Heidi Phillips,et al.  Mice Lacking α-Synuclein Display Functional Deficits in the Nigrostriatal Dopamine System , 2000, Neuron.

[23]  P. Lansbury,et al.  Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  E. Masliah,et al.  Role of Cytochrome c as a Stimulator of α-Synuclein Aggregation in Lewy Body Disease* , 1999, The Journal of Biological Chemistry.

[25]  J. Growdon,et al.  Clinical and quantitative pathologic correlates of dementia with Lewy bodies , 1999, Neurology.

[26]  M. Citron,et al.  Both Familial Parkinson’s Disease Mutations Accelerate α-Synuclein Aggregation* , 1999, The Journal of Biological Chemistry.

[27]  E. Masliah,et al.  Oxidative stress induces amyloid-like aggregate formation of NACP/α-synuclein in vitro , 1999 .

[28]  M. LaVoie,et al.  Dopamine Quinone Formation and Protein Modification Associated with the Striatal Neurotoxicity of Methamphetamine: Evidence against a Role for Extracellular Dopamine , 1999, The Journal of Neuroscience.

[29]  Ralph A. Bradshaw,et al.  N-Terminal processing: the methionine aminopeptidase and Nα-acetyl transferase families , 1998 .

[30]  E. Masliah,et al.  Non-A beta component of Alzheimer's disease amyloid (NAC) is amyloidogenic. , 1995, Biochemistry.

[31]  Akihiko Iwai,et al.  The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system , 1995, Neuron.

[32]  E. Masliah,et al.  Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Scheller,et al.  Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  K. Myambo,et al.  Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure , 1987, Journal of bacteriology.

[35]  W. Vogt Oxidation of methionyl residues in proteins: tools, targets, and reversal. , 1995, Free radical biology & medicine.