Creep and shrinkage of concrete: physical origins and practical measurements

Subcommittee 4 of RILEM TC 107-CSP has established recommendations for shrinkage and creep tests. These recommendations are based on physical and mechanical analysis of these tests, to ensure that they provide reproducible and objective results. However, the complete specification of these tests must also make it possible to respond to diversified needs: in particular, industrial users (contractors, suppliers of materials, etc.) are increasingly led to request such tests, and the type of experimental data they expect can be quite different from what is expected by people who draft regulations or develop numerical models. This paper therefore presents, in a first part, thinking about these needs, which are found to be highly varied and rapidly evolving. In a second part, we review the importance of the scale effect that makes it tricky to attempt any extrapolation of the available experimental results in two directions (to the long-term and to large thickness). In the absence of a satisfactory explanation of this scale effect, a practical method is proposed that can be used to get round this difficulty experimentally and to deal with certain engineering problems.

[1]  Zdenek P. Bazant,et al.  Scaling laws in mechanics of failure , 1993 .

[2]  F. H. Wittmann,et al.  Total deformation of loaded drying concrete , 1980 .

[3]  P Laplante PROPRIETES MECANIQUES DES BETONS DURCISSANTS : ANALYSE COMPAREE DES BETONS CLASSIQUES ET A TRES HAUTES PERFORMANCES , 1993 .

[4]  Bruce A. Suprenant Serviceability and Durability of Construction Materials , 1990 .

[5]  Zdenek P. Bazant,et al.  Statistics of Shrinkage Test Data , 1987 .

[6]  C. Boulay,et al.  Mesure des déformations du béton au jeune âge , 1993 .

[7]  G. Bastian,et al.  PROPRIETES THERMOPHYSIQUES D'UN BETON FRAICHEMENT COULE , 1995 .

[8]  Sven Thelandersson,et al.  Tension softening and cracking in drying concrete , 1988 .

[9]  A. Ehrlacher,et al.  Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale , 1995 .

[10]  Zdeněk P Bazant Material models for structural creep analysis , 1988 .

[11]  Zdeněk P. Bažant,et al.  Creep and Shrinkage of Concrete , 1965, Nature.

[12]  Franz-Josef Ulm,et al.  Microprestress-Solidification Theory for Concrete Creep. I: Aging and Drying Effects , 1997 .

[13]  Olivier Coussy,et al.  Strength growth as chemo-plastic hardening in early age concrete , 1996 .

[14]  Z. Bažant,et al.  STATISTICAL EXTRAPOLATION OF SHRINKAGE DATA - PART I: REGRESSION , 1987 .

[15]  Olivier Coussy,et al.  Mechanics of porous continua , 1995 .

[16]  Olivier Coussy,et al.  Couplings in early-age concrete: From material modeling to structural design , 1998 .

[17]  Zdeněk P. Baǎnt,et al.  Effect of cracking in drying and shrinkage specimens , 1982 .

[18]  L. Granger Comportement différé du béton dans les enceintes de centrales nucléaires , 1996 .

[19]  Jan Skalny,et al.  Materials science of concrete , 1989 .

[20]  C. Boulay,et al.  Evolution du coefficient de dilatation thermique du béton en fonction de sa maturité aux tout premiers âges , 1994 .

[21]  Jérôme Crassous,et al.  Experimental study of a nanometric liquid bridge with a surface force apparatus , 1993 .