Combining visual dictionary, kernel-based similarity and learning strategy for image category retrieval

This paper presents a search engine architecture, RETIN, aiming at retrieving complex categories in large image databases. For indexing, a scheme based on a two-step quantization process is presented to compute visual codebooks. The similarity between images is represented in a kernel framework. Such a similarity is combined with online learning strategies motivated by recent machine-learning developments such as active learning. Additionally, an offline supervised learning is embedded in the kernel framework, offering a real opportunity to learn semantic categories. Experiments with real scenario carried out from the Corel Photo database demonstrate the efficiency and the relevance of the RETIN strategy and its outstanding performances in comparison to up-to-date strategies.

[1]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[2]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[3]  T.S. Huang,et al.  A relevance feedback architecture for content-based multimedia information retrieval systems , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[4]  Remco C. Veltkamp,et al.  Content-based image retrieval systems: A survey , 2000 .

[5]  Christophe Ambroise,et al.  Feature selection for semisupervised learning applied to image retrieval , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[6]  Cordelia Schmid,et al.  Weakly Supervised Learning of Visual Models and Its Application to Content-Based Retrieval , 2004, International Journal of Computer Vision.

[7]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[8]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[9]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[10]  Matthieu Cord,et al.  Stochastic exploration and active learning for image retrieval , 2007, Image Vis. Comput..

[11]  Vapnik,et al.  SVMs for Histogram Based Image Classification , 1999 .

[12]  Nilesh V. Patel,et al.  Statistical approach to scene change detection , 1995, Electronic Imaging.

[13]  Matthieu Cord,et al.  Long-term similarity learning in content-based image retrieval , 2002, Proceedings. International Conference on Image Processing.

[14]  N. Cristianini,et al.  On Kernel-Target Alignment , 2001, NIPS.

[15]  Matthieu Cord,et al.  RETIN AL: an active learning strategy for image category retrieval , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[16]  Patrick Gros,et al.  Recherche approximative de plus proches voisins , 2003, Tech. Sci. Informatiques.

[17]  Robert M. Haralick,et al.  A weighted distance approach to relevance feedback , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[18]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[19]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[20]  Douglas R. Heisterkamp Building a latent semantic index of an image database from patterns of relevance feedback , 2002, Object recognition supported by user interaction for service robots.

[21]  Thomas S. Huang,et al.  Optimizing learning in image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[22]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[23]  Klaus Brinker,et al.  Incorporating Diversity in Active Learning with Support Vector Machines , 2003, ICML.

[24]  Yixin Chen,et al.  Image Categorization by Learning and Reasoning with Regions , 2004, J. Mach. Learn. Res..

[25]  Murat Kunt,et al.  Content-based retrieval from image databases: current solutions and future directions , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[26]  Edward Y. Chang,et al.  Statistical learning for effective visual information retrieval , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[27]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[28]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[29]  Thorsten Joachims,et al.  Learning a Distance Metric from Relative Comparisons , 2003, NIPS.

[30]  Joachim M. Buhmann,et al.  Non-parametric similarity measures for unsupervised texture segmentation and image retrieval , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Aleksandra Mojsilovic,et al.  Capturing image semantics with low-level descriptors , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[32]  Nicu Sebe,et al.  Machine Learning in Computer Vision , 2006, Computational Imaging and Vision.

[33]  Matthieu Cord,et al.  Back-propagation algorithm for relevance feedback in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[34]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[35]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[36]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[37]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[38]  Carlo Tomasi,et al.  Perceptual metrics for image database navigation , 1999 .

[39]  Andrew McCallum,et al.  Toward Optimal Active Learning through Sampling Estimation of Error Reduction , 2001, ICML.

[40]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[41]  Bir Bhanu,et al.  Probabilistic Feature Relevance Learning for Content-Based Image Retrieval , 1999, Comput. Vis. Image Underst..

[42]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[43]  Le Saux,et al.  Classification non exclusive et personnalisation par apprentissage : application à la navigation dans les bases d'images , 2003 .

[44]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[45]  Giuseppe Patanè,et al.  The enhanced LBG algorithm , 2001, Neural Networks.

[46]  Nuno Vasconcelos,et al.  Bayesian models for visual information retrieval , 2000 .

[47]  Matthieu Cord,et al.  Precision-Oriented Active Selection for Interactive Image Retrieval , 2006, 2006 International Conference on Image Processing.

[48]  Matthieu Cord,et al.  RETIN: A Content-Based Image Indexing and Retrieval System , 2001, Pattern Analysis & Applications.

[49]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[50]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[51]  Thierry Pun,et al.  Long-Term Learning from User Behavior in Content-Based Image Retrieval , 2000 .

[52]  Nikolaos D. Doulamis,et al.  A recursive optimal relevance feedback scheme for content based image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[53]  John P. Oakley,et al.  Storage and Retrieval for Image and Video Databases , 1993 .

[54]  Simone Santini,et al.  Emergent Semantics through Interaction in Image Databases , 2001, IEEE Trans. Knowl. Data Eng..